Waves and tides have bigger impact on marine life than human activity

March 04, 2020

The biggest impacts on the sea life in Swansea Bay, Wales, come from waves and tides rather than human activity, a wide-ranging new study - encompassing over 170 species of fish and other sea life such as crabs, squid and starfish - has revealed.

Combining data on species, human impacts, and wave and tide patterns, the study, by a Swansea University team, provides the most comprehensive picture to date of the factors that drive change in Swansea Bay. It will give planners a better understanding of the Bay and of the potential impacts of new developments on its ecosystem.

With its two urban centres in Swansea and Port Talbot, Swansea Bay is home to around 290,000 people and is a centre for industry, including a large steelworks and two ports. It has the second highest tidal range in the world, as Atlantic tides are funnelled into the narrowing Bristol Channel and then spread across the shallow bay.

For scientists studying what's happening to the environment, highly-urbanised coastal areas like Swansea Bay present a problem. There are so many different natural and human influences on the environment that it can be difficult to disentangle them, or to work out which are the most significant.

Yet without this knowledge of the full picture, planners and environmental managers cannot make the best decisions about ecological impact.

This is where the new research comes in. The Swansea team, which included a biologists and engineers, gathered data on species, human impacts and wave and tide patterns and fed it into a statistical model. This meant they could then assess the significance of different factors.

They found that:The impetus for this study came from the tidal lagoon project, which revealed that there were gaps in our understanding of Swansea Bay, a highly-used, urbanised coastal ecosystem. So the Swansea University team, who had been working on separate studies, joined forces to produce this new research as part of SEACAMS, an EU-funded initiative focusing on marine renewable energy.

Dr Ruth Callaway of the College of Science at Swansea University, who led the work, said:

"It may be a surprise given that it is a highly-urbanised area, but the biggest impact on the ecology of Swansea Bay are the waves and tides. Our research shows that these natural factors shape the marine life more than human activity, such as wastewater discharge and discarding dredged material.

However, Swansea Bay remains a complex ecosystem that has been changed dramatically over the past centuries, and we need as full a picture as possible of impacts on it. That's what our research findings will help to provide."

Dr Callaway underlined how the scope of the research allowed them to build a comprehensive picture:

"What is new about this research is that we used a combination of computer models and empirical field data: we examined the wave environment and tidal currents and measured various natural and human factors.

We also studied a wide range of species. Often judgement about ecological quality and environmental impact is based on a sub-set of coastal fauna, for example the biodiversity of small animals living inside the seafloor sediments. In contrast, our investigation also included fauna living on top of the seafloor, revealing significant differences between the different groups."

Dr Iain Fairley, of Swansea University College of Engineering, who modelled the wave environment of the Bay, said:

"The high correlation between both hydrodynamic models of this study and each of the surveyed faunal communities confirmed that good quality three-dimensional environmental models can be useful tools in understanding the distribution of marine life. They are important tools to support ecosystem management, particularly in areas with complex, highly variable hydrodynamic patterns."

Dr Jose Horrillo-Caraballo, also of the College of Engineering, added:

"In the paper we discuss the balance between the hydrodynamic regime and anthropogenic factors in shaping the biota. We touch on the question of resistance of an ecosystem to change, but also differentiate between the current and historical situation."

The research was published in "Science of the Total Environment".
Notes to Editors

Read the research paper: authors: Ruth Callaway, Iain Fairley, Jose Horrillo-Caraballo, Swansea University. Published in Science of the Total Environment

About SEACAMS: Now in its second phase, SEACAMS2 is a £17 M project partnership between Bangor and Swansea universities, part funded by the European Regional Development Fund. The main objective of SEACAMS2 is to assist the development of opportunities in 'Low carbon, Energy and Environment' in Wales, focussing on marine renewable energy. The Colleges of Engineering and Science jointly approached questions about the Swansea Bay ecosystem.

Swansea University is a world-class, research-led, dual campus university offering a first class student experience and has one of the best employability rates of graduates in the UK. The University has the highest possible rating for teaching - the Gold rating in the Teaching Excellence Framework (TEF) in 2018 and was commended for its high proportions of students achieving consistently outstanding outcomes.

Swansea climbed 14 places to 31st in the Guardian University Guide 2019, making us Wales' top ranked university, with one of the best success rates of graduates gaining employment in the UK and the same overall satisfaction level as the Number 1 ranked university.

The 2014 Research Excellence Framework (REF) 2014 results saw Swansea make the 'biggest leap among research-intensive institutions' in the UK (Times Higher Education, December 2014) and achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK.

The University is in the top 300 best universities in the world, ranked in the 251-300 group in The Times Higher Education World University rankings 2018. Swansea University now has 23 main partners, awarding joint degrees and post-graduate qualifications.

The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students. The University has ambitious expansion plans as it moves towards its centenary in 2020 and aims to continue to extend its global reach and realise its domestic and international potential.

Swansea University is a registered charity. No.1138342. Visit http://www.swansea.ac.uk

For more information:

Kevin Sullivan,Swansea University Public Relations Office
Tel: 01792 513245, k.g.sullivan@swansea.ac.uk

Swansea University

Related Marine Life Articles from Brightsurf:

Saving marine life: Novel method quantifies the effects of plastic on marine wildlife
Scientists at Tokyo Institute of Technology together with their international collaborators developed a novel quantitative method to quantify the effects of plastic on marine animals.

Life in a nutshell: New species found in the carapace of late cretaceous marine turtle
Fossils have often been known to tell stories of immobile organisms living in the hard tissues of dead ancient marine animals.

Traces of ancient life tell story of early diversity in marine ecosystems
If you could dive down to the ocean floor nearly 540 million years ago just past the point where waves begin to break, you would find an explosion of life--scores of worm-like animals and other sea creatures tunneling complex holes and structures in the mud and sand--where before the environment had been mostly barren.

Marine energy devices likely pose minimal impacts to marine life, report shows
On World Oceans Day, an international team of marine scientists reports that the potential impact of marine renewable energy to marine life is likely small or undetectable.

Our oceans are suffering, but we can rebuild marine life
It's not too late to rescue global marine life, according to a study outlining the steps needed for marine ecosystems to recover from damage by 2050.

Landmark study concludes marine life can be rebuilt by 2050
An international study recently published in the journal Nature that was led by KAUST professors Carlos Duarte and Susana Agustí lays out the essential roadmap of actions required for the planet's marine life to recover to full abundance by 2050.

Waves and tides have bigger impact on marine life than human activity
The biggest impacts on the sea life in Swansea Bay (Wales) come from waves and tides rather than human activity, a wide-ranging new study -- encompassing over 170 species of fish and other sea life such as crabs, squid and starfish -- has revealed.

Consider marine life when implementing offshore renewable power
With countries adopting green energy practices, renewable energy now accounts for a third of the world's power.

Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.

Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.

Read More: Marine Life News and Marine Life Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.