Micromotors get supercharged with three 'engines'

March 04, 2020

Someday, microscopic robots could perform useful functions, such as diagnostic testing in lab-on-a-chip sensors, micropatterning surfaces or repairing equipment in tight spaces. But first, scientists need to be able to tightly control the microbots' speed. Now, researchers reporting in ACS' Chemistry of Materials have developed micromotors with three "engines" that they can control separately with chemical fuel, magnets and light.

Micromotors are tiny tools that convert stimuli, such as chemical fuel, light, magnetic fields or sound, into motion to perform tasks. Previously, researchers have demonstrated micromotors powered by one or two of these stimuli. For example, micromotors containing platinum nanoparticle engines can be powered by adding a small amount of hydrogen peroxide to a solution. The engine's catalyst converts the hydrogen peroxide fuel into bubbles, which propel the micromotor through the liquid. Beatriz Jurado Sánchez, Alberto Escarpa and colleagues wanted to build a "supercharged" micromotor with three engines that run on different types of fuel.

To make their micromotors, the team coated polystyrene microspheres with layers of gold and 2D nanomaterials. Then, they attached three different nanoparticles that functioned as engines and that made the micromotors responsive to hydrogen peroxide, magnets and light. When the researchers exposed the micromotors to all three stimuli simultaneously, the speed increased by as much as 73% over that attained with micromotors containing only two engines. The supercharged micromotors could travel at relatively high speeds even through viscous fluids, including saliva, blood and milk. By varying factors, such as the hydrogen peroxide concentration, the type of catalyst used and the light intensity, the new micromotors offer a "myriad of controllable propulsion behaviors," the researcher say.
-end-
The authors acknowledge funding from the Spanish Ministry of Science, Innovation and Universities (Ramón y Cajal, Plan Nacional de Investigación), the University of Alcalá and the Community of Madrid (TRANSNANOAVANSENS program, Programa de Estímulo a la Investigación de Jóvenes Doctores).

The abstract that accompanies this study is available here.

For more research news, journalists and public information officers are encouraged to apply for complimentary press registration for the ACS Spring 2020 National Meeting & Exposition in Philadelphia.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.