Nav: Home

Nanoscale spectroscopy review showcases a bright future

March 04, 2020

Modern society is working closer to the nanoscale than it realises. Breakthroughs and advances in developing and manipulating nanostructures have led to technological progress that not only drives imaging and sensing devices but also makes possible mainstays of modern life such as touch screens and high resolution LED displays.

A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Senior author, Professor Dayong Jin, says that by trying to understand how single nanoparticles behave scientists are asking very fundamental questions to develop tools that can be used to realise technological breakthroughs in diverse areas including personalised medicine, cyber security and quantum communication.

"The purpose of this field is to really understand the properties of these artificial atoms so that their properties can be controlled and tailored for the application we need," he says. Professor Jin is the Director of the University of Technology Sydney (UTS) Institute for Biomedical Materials & Devices (IBMD) and director of UTS-SUStech Joint Research Centre for Biomedical Materials & Devices.

The paper charts the rise of single molecule measurements and the rapid progress in optical microscopy that made it possible to 'see' the fluorescence of single photons and, thereby, the discovery of the underlying photophysics of the nanoscale. From quantum dots to carbon dots, fluorescent nanodiamonds and nanoparticles fabricated from obscure minerals such as perovskite - all promising tools for applications as diverse as imaging, biomarker detection and data storage.

But as the authors admit "the closer we pursue the perfection in nanoparticle design, the harder the challenges become".

Lead author Dr Jiajia Zhou from UTS IBMD, who specialises in building single particle optical spectroscopy to uncover the more unpredictable behaviour of nanoparticles, says that there is demand for smaller and more efficient nanoparticles with new desirable functions and characteristics.

"Especially for biomedical and intracellular applications such as molecular probes and sensors. Here we are talking about only a few nanometers in size where the challenge in forming uniform nanoparticles and controlling their shape, size and optical properties requires new knowledge about nanoparticle surface chemistry, for example," she says.

Still, in a very fast moving field the potential seems only to be limited by scientific imagination and, more likely, the ability of scientific and engineering disciplines to integrate knowledge and skills, the authors say.

"This paper is a large survey and highlights the need for a global effort and resources towards the fundamental research needed to keep pushing the boundaries of what is possible at the nanoscale, so society can benefit from the many emerging opportunities," Professor Jin says.

Professor Jin imagines a world where nanoscale tweezing is used to assemble hybrid nanoparticle- based devices and where biomedical signatures can be used to answer questions around an individual's response to drug therapies, all from one drop of blood.

"Everyday when people enjoy using smartphones and touch screens to send messages, and high resolution screen displays to view images and watch videos, they might forget where this technology comes from.

"These technologies may look like engineering projects but really they are the result of decades of research from scientists and students working 'in the dark' to answer fundamental questions about how nature works at the smallest of scales," he said.
Co-authors include Dr Alexey Chizhik from University of Gottingen and Nobel Laureate Professor Steven Chu from Stanford University.

University of Technology Sydney

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at