FSU researchers propose new physics to explain decay of subatomic particle

March 04, 2020

TALLAHASSEE, Fla. -- Florida State University physicists believe they have an answer to unusual incidents of rare decay of a subatomic particle called a Kaon that were reported last year by scientists in the KOTO experiment at the Japan Proton Accelerator Research Complex.

FSU Associate Professor of Physics Takemichi Okui and Assistant Professor of Physics Kohsaku Tobioka published a new paper in the journal Physical Review Letters that proposes that this decay is actually a new, short-lived particle that has avoided detection in similar experiments.

"This is such a rare disintegration," Okui said. "It's so rare, that they should not have seen any. But if this is correct, how do we explain it? We think this is one possibility."

Kaons are particles made of one quark and one antiquark. Researchers study how they function -- which includes their decay -- as a way to better understand how the world works. But last year, researchers in the KOTO experiment reported four instances of a particular rare decay that should have been too rare to be detected yet.

This observation violates the standard model of physics that explains the basic fundamental forces of the universe and classifies all known elementary particles.

According to their calculations, there could be two possibilities for new particles. In one scenario, they suggest that the Kaon might decay into a pion -- a subatomic particle with a mass about 270 times that of an electron -- and some sort of invisible particle. Or, the researchers in the KOTO experiment could have witnessed the production and decay of something completely unknown to physicists.

Researchers in Japan are conducting a special data run to confirm whether the previous observations were true detections of new particles or simply noise.

"If it's confirmed, it's very exciting because it's completely unexpected," Tobioka said. "It might be noise, but it might not be. In this case, expectation of noise is very low, so even one event or observation is very striking. And in this case there were four."
Okui and Tobioka's co-authors on this study were Teppei Kitahara and Yotam Soreg from the Israel Institute of Technology and Gilad Perez from the Weizmann Institute of Science in Israel. This research is funded by the Department of Energy.

Florida State University

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.