New method to estimate sea ice thickness

March 05, 2008

Scientists recently developed a new modeling approach to estimate sea ice thickness. This is the only model based entirely on historical observations.

The model was developed by scientists with the U.S. Geological Survey and the Russian Academy of Sciences, Moscow.

Using this new technique, the thickness of Arctic sea ice was estimated from 1982 to 2003. Results showed that average ice thickness and total ice volume fluctuated together during the early study period, peaking in the late 1980s and then declining until the mid-1990s. Thereafter, ice thickness slightly increased but the total volume of sea ice did not increase.

Scientists propose that the volume stayed constant during the study's latter years because while the ice was thickening in the high latitudes of the Arctic, the surrounding sea ice was melting. Sea ice, however, can only become so thick, and if Arctic sea ice continues to melt, the total volume of sea ice in the Arctic will decrease.

The most dramatic losses in sea ice cover have occurred since 2003, and as scientists acquire newer data, they will apply the new model to study recent years of ice thickness and volume change.

This modeling approach uses sea ice motion data to follow parcels of ice backward in time at monthly intervals for up to 3 years while accumulating a history of the solar radiation and air temperature to which the ice was exposed. The model was constructed by fitting these data with an ice parcel's known thickness to determine how the thickness of sea ice changes in response to different environmental conditions. Data on the known thickness are obtained from measurements by submarine cruises and surface coring missions.

"Sea ice is affected by the accumulation of environmental factors to which it has been exposed," said USGS Director Mark Myers. "Understanding the natural variability of sea ice thickness is critical for improving global climate models. Sea ice regulates energy exchange and plays an important role in the Earth's climate system."

This model, built on historical observations, complements thermodynamic models that simulate ice thickness. Science benefits from having different models. Comparing different model outputs can help improve predictive capabilities. Many scientists worldwide are using satellite and ground observations of the Arctic's atmosphere, ice and ocean to gain a better understanding of how changes at the top of the world affect ecosystems both locally and globally.
-end-
The report "Fluctuating Arctic sea ice thickness changes estimated by an in-situ learned and empirically forced neural network model" was recently published in the Journal of Climate and can be found at the American Meteorological Society's journal site at http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2007JCLI1787.1.

For additional information on this research, visit the USGS Remote Sensing and Sea Ice Research site at http://alaska.usgs.gov/science/biology/remote_sensing/sea_ice.html.

Listen to a podcast interview with USGS scientist David Douglas at http://www.usgs.gov/corecast/details.asp?ID=62.

The USGS provides science for a changing world. For more information, visit www.usgs.gov.

Subscribe to USGS News Releases via our electronic mailing list at http://www.usgs.gov/newsroom/list_server.asp or our RSS feed at http://feeds.feedburner.com/UsgsNewsroom.

US Geological Survey

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.