Rusty worms in the brain

March 05, 2008

Iron is vital to human life; for example, it is a component of hemoglobin, the substance that makes our blood red and supplies our cells with oxygen. However, iron can also cause heavy damage; it is thought that iron deposits in the brain contribute to certain forms of neurodegenerative diseases such as Parkinson's, Huntington' s, and Alzhiemer's. A malfunction of the blood transporter transferrin may be to blame. A team led by Peter J. Sadler at the University of Warwick (Coventry, UK) and Sandeep Verma of the Indian Institute of Technology (Kanpur, India) has now been able to show that transferrin can clump together to form wormlike fibrils. As reported in the journal Angewandte Chemie, this process releases rustlike iron particles.

Within the body, iron is present in the form of iron ions with a threefold positive charge (Fe3+) and must always be well "wrapped" to prevent it from reacting with proteins and causing damage. In blood plasma, iron is carried in the "pockets" of the iron transport protein transferrin. It only gets unwrapped once it is inside special cellular organelles.

But things can go wrong in this system, as Sadler and his colleagues have now proven. The researchers deposited iron-loaded human transferrin onto various surfaces under conditions that emulate those in living organisms. By using microscopy and electron microscopy, the researchers showed that the proteins aggregate into long wormlike fibrils. These "worms" have a regular striped pattern; the narrow dark stripes contain something similar to rust. "Within the fibrils, the iron ions are no longer properly enclosed;" explains Sadler, "instead, they aggregate into periodically arranged nanocrystals whose structure seems to be very similar to the iron oxide mineral lepidocrocite".

The researchers suspect that in certain forms of neurodegenerative disease, iron deposits may form in a similar fashion in the brain. Such iron crystals are highly reactive and could lead to the formation of toxic free radicals, which attack and destroy nerve cells. If this assumption can be verified in vivo, agents that hinder the aggregation of transferrin may be the foundation for a new family of drugs.
-end-
Author: Peter J. Sadler, University of Warwick, Coventry (UK), http://go.warwick.ac.uk/sadlergroup/

Title: Periodic Iron Nanomineralization in Human Serum Transferrin Fibrils

Angewandte Chemie International Edition 2008, 47, No. 12, 2221-2231, doi: 10.1002/anie.200705723

Wiley

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.