Protein structure determined in living cells

March 05, 2009

The function of a protein is determined both by its structure and by its interaction partners in the cell. Until now, proteins had to be isolated for analyzing them. An international team of researchers from Tokyo Metropolitan University, Goethe University, and the Frankfurt Institute for Advanced Studies (FIAS) has, for the first time, determined the structure of a protein in its natural environment, the living cell. Using nuclear magnetic resonance (NMR) spectroscopy, the researchers solved the structure of a protein within the bacterium Escherichia coli. "We have reached an important goal of molecular biology", says Prof. Peter Güntert from the Goethe University's Biomolecular Magnetic Resonance Center. (BMRZ) of The research results will be published by the scientific journal Nature on March 5, 2009.

Conventionally, proteins are extracted from the cell, purified, and analyzed in single crystals or in solution. NMR spectroscopy detects signals from the nuclei of hydrogen atoms that are ubiquitous in organic molecules. Measurements in the living cell are challenging because it is difficult to distinguish between the protein of interest and the many other proteins in the cytoplasm. The Japanese researchers around Prof. Yutaka Ito solved this problem by introducing the gene of a putative heavy-metal-binding protein into the model system Escherichia coli, where the protein was in high concentration.

The success of the measurements relies on the method of "in-cell" NMR spectroscopy that was developed a few years ago by Prof. Volker Dötsch from BMRZ at Goethe University. Dötsch was able to attribute signals from living cells to specific proteins that he had labeled with the stable nitrogen isotope N-15. However, it was not possible to calculate a three-dimensional structure. "About two days of measurement time are required to measure a multidimensional NMR spectrum", says Peter Güntert. "Unfortunately, the cells survive for only a 5-6 hours without supply of oxygen and nutrients. Güntert and his colleagues compensated for the concomitant drastic reduction of the measurement time by computational reconstruction of the complete spectrum. Then, they calculated a detailed three-dimensional structure of the protein within E. coli cells using software that was developed in their research group.

The structure determination of proteins by in-cell NMR spectroscopy opens new avenues to investigate at atomic resolution how proteins participate in biological processes in living systems. In-cell NMR spectroscopy advances our understanding of the molecular basis of life, and can contribute to the development of new, better targeted pharmaceuticals.
Since July 2007 Prof. Peter Güntert is leading the Lichtenberg professorship for NMR-based Computational Structural Biology at Goethe University that is supported with more than 1.4 million Euro by the VolkswagenFoundation.

Publication: Sakakibara, D., Sasaki, A., Ikeya, T., Hamatsu, J., Hanashima, T., Mishima, M., Yoshimasu, M., Hayashi, N., Mikawa, T., Wälchli, M., Smith, B. O., Shirakawa, M., Güntert, P. & Ito, Y. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature (March 5, 2009).

Goethe University Frankfurt

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to