Nav: Home

Materials 'sandwich' breaks barrier for solar cell efficiency

March 05, 2018

BROOKLYN, New York - Solar cells have great potential as a source of clean electrical energy, but so far they have not been cheap, light, and flexible enough for widespread use. Now a team of researchers led by Tandon Associate Professor André D. Taylor of the Chemical and Biomolecular Engineering Department has found an innovative and promising way to improve solar cells and make their use in many applications more likely.

Most organic solar cells use fullerenes, spherical molecules of carbon. The problem, explains Taylor, is that fullerenes are expensive and don't absorb enough light. Over the last 10 years he has made significant progress in improving organic solar cells, and he has recently focused on using non-fullerenes, which until now have been inefficient. However, he says, "the non-fullerenes are improving enough to give fullerenes a run for their money."

Think of a solar cell as a sandwich, Taylor says. The "meat" or active layer - made of electron donors and acceptors - is in the middle, absorbing sunlight and transforming it into electricity (electrons and holes), while the "bread," or outside layers, consist of electrodes that transport that electricity. His team's goal was to have the cell absorb light across as large a spectrum as possible using a variety of materials, yet at the same time allow these materials to work together well. "My group works on key parts of the 'sandwich,' such as the electron and hole transporting layers of the 'bread,' while other groups may work only on the 'meat' or interlayer materials. The question is: How do you get them to play together? The right blend of these disparate materials is extremely difficult to achieve."

Using a squaraine molecule in a new way - as a crystallizing agent - did the trick. "We added a small molecule that functions as an electron donor by itself and enhances the absorption of the active layer," Taylor explains. "By adding this small molecule, it facilitates the orientation of the donor-acceptor polymer (called PBDB-T) with the non-fullerene acceptor, ITIC, in a favorable arrangement."

This solar architecture also uses another design mechanism that the Taylor group pioneered known as a FRET-based solar cell. FRET, or Förster resonance energy transfer, is an energy transfer mechanism first observed in photosynthesis, by which plants use sunlight. Using a new polymer and non-fullerene blend with squaraine, the team converted more than 10 percent of solar energy into power. Just a few years ago this was considered too lofty a goal for single-junction polymer solar cells. "There are now newer polymer non-fullerene systems that can perform above 13 percent, so we view our contribution as a viable strategy for improving these systems," Taylor says.

The organic solar cells developed by his team are flexible and could one day be used in applications supporting electric vehicles, wearable electronics, or backpacks to charge cell phones. Eventually, they could contribute significantly to the supply of electric power. "We expect that this crystallizing-agent method will attract attention from chemists and materials scientists affiliated with organic electronics," says Yifan Zheng, Taylor's former research student and lead author of the article about the work in the journal Materials Today.

Next for the research team? They are working on a type of solar cell called a perovskite as well as continuing to improve non-fullerene organic solar cells.
-end-
"A Highly Efficient Polymer Non-Fullerene Organic Solar Cell Enhanced by Introducing a Small Molecule as a Crystallizing-Agent" is available at https://doi.org/10.1016/j.mattod.2017.10.003. In addition to Taylor and Zheng, co-authors are Jiang Huang and Junsheng Yu of the University of Electronic Science and Technology of China; Gang Wang of Northwestern University; Jaemin Kong, a post-doctoral researcher now at NYU; and Di Huang, Megan Mohadjer Beromi, and Nilay Hazari of Yale. The National Natural Science Foundation of China, the Project of Science and Technology of Sichuan Province, the U.S. National Science Foundation, and the Yale Institute for Nanoscience and Quantum Engineering supported the research.

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, the country's largest private research university, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

NYU Tandon School of Engineering

Related Solar Cells Articles:

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.