Nav: Home

Drug-producing bacteria possible with synthetic biology breakthrough

March 05, 2018

  • Bacteria could be programmed to produce drugs, thanks to breakthrough research into synthetic biology from the Universities of Warwick and Surrey

  • Researchers develop unique system to dynamically allocate essential cellular resources to both synthetic circuit and host cell - allowing both to survive and function properly

  • Adding synthetic circuitry to cells could enable them to be turned into factories for the production of antibiotics and other valuable drugs - opening up vast possibilities for the future of healthcare

Bacteria could be programmed to efficiently produce drugs, thanks to breakthrough research into synthetic biology using engineering principles, from the University of Warwick and the University of Surrey.

Led by the Warwick Integrative Synthetic Biology Centre at Warwick's School of Engineering and the Faculty of Health and Medical Sciences at the University of Surrey, new research has discovered how to dynamically manage the allocation of essential resources inside engineered cells - advancing the potential of synthetically programming cells to combat disease and produce new drugs.

The researchers have developed a way to efficiently control the distribution of ribosomes - microscopic 'factories' inside cells that build proteins that keep the cell alive and functional - to both the synthetic circuit and the host cell.

Synthetic circuitry can be added to cells to enhance them and make them perform bespoke functions - providing vast new possibilities for the future of healthcare and pharmaceuticals, including the potential for cells specially programmed to produce novel antibiotics and other useful compounds.

A cell only has a finite amount of ribosomes, and the synthetic circuit and host cell in which the circuitry is inserted both compete for this limited pool of resources. It is essential that there are enough ribosomes for both, so they can survive, multiply and thrive. Without enough ribosomes, either the circuit will fail, or the cell will die - or both.

Using the engineering principal of a feedback control loop, commonly used in aircraft flight control systems, the researchers have developed and demonstrated a unique system through which ribosomes can be distributed dynamically - therefore, when the synthetic circuit requires more ribosomes to function properly, more will be allocated to it, and less allocated to the host cell, and vice versa.

Declan Bates, Professor of Bioengineering at the University of Warwick's School of Engineering and Co-Director, Warwick Integrative Synthetic Biology Centre (WISB) commented:

"Synthetic Biology is about making cells easier to engineer so that we can address many of the most important challenges facing us today - from manufacturing new drugs and therapies to finding new biofuels and materials. It's been hugely exciting in this project to see an engineering idea, developed on a computer, being built in a lab and working inside a living cell. "eng logo

José Jiménez, Lecturer in Synthetic Biology at the University of Surrey's Faculty of Health and Medical Sciences:

"The ultimate goal of the selective manipulation of cellular functions like the one carried out in this project is to understand fundamental principles of biology itself. By learning about how cells operate and testing the constraints under which they evolve, we can come up with ways of engineering cells more efficiently for a wide range of applications in biotechnology"

Ribosomes live inside cells, and construct proteins when required for a cellular function. When a cell needs protein, the nucleus creates mRNA, which is sent to the ribosomes - which then synthesise the essential proteins by bonding the correct amino acids together in a chain.
-end-
Based on an original idea arising from discussions between Alexander Darlington, a PhD candidate at the University of Warwick, and Dr. Jiménez, the theory of dynamically allocating resources in cells was tested and analysed with mathematical modelling at Warwick, and then built and demonstrated in the laboratory at the University of Surrey.

Notes to editors:

The research, 'Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes', is published Open Access in Nature Communications.

doi:10.1038/s41467-018-02898-6

It is authored by Alexander P. S. Darlington, Juhyun Kim, José I. Jiménez & Declan G. Bates.

University of Warwick

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.