Scientists develop a tunable bio-imaging device using terahertz plasmonics

March 05, 2019

Researchers at Tokyo Institute of Technology (Tokyo Tech) have developed an easy-to-use, tunable biosensor tailored for the terahertz range. Images of mouse organs obtained using their new device verify that the sensor is capable of distinguishing between different tissues. The achievement expands possibilities for terahertz applications in biological analysis and future diagnostics.

Plasmonics are highly sought-after technologies for device applications in security, sensing and medical care. They involve harnessing the excitation of free electrons in metals that are called surface plasmons. One of the most promising applications of plasmonic materials is the development of ultra-sensitive biosensors.

The ability to combine plasmonics with emerging terahertz (THz) technologies for detecting tiny, biological samples has so far proven challenging, mainly because THz light waves have longer wavelengths than visible, infrared and ultraviolet light.

Now, Yukio Kawano and colleagues at Tokyo Tech's Laboratory for Future Interdisciplinary Research of Science and Technology working in collaboration with researchers at Tokyo Medical and Dental University have found a way to overcome this barrier by designing a frequency-tunable plasmonic-based THz device.

One of the key features of the new device is its spiral bull's eye (SBE) design (see Figure 1). Due to its smoothly varied grooves, "the groove period continuously changes with the diameter direction, resulting in continuously frequency-tunable characteristics," Kawano says in their study published in Scientific Reports.

Another advantage of the new design is that it incorporates a so-called Siemens-star aperture, which enables a user-friendly way of selecting the desired frequency by simply changing the rotation of the spiral plasmonic structure.

"The device also increases the electric field intensity at the subwavelength aperture, thus significantly amplifying the transmission," Kawano says.

In preliminary experiments to assess how well the new device could visualize biological tissues, the researchers obtained THz transmission spectra for various mouse organs, as shown in Figure 2. To probe further, they also conducted THz mapping of mouse tails. By comparing images obtained with and without the SBE design, the study showed that the former led to a markedly improved ability to distinguish between different tissues such as hair, skin and bone (see Figure 3).
-end-
The study acknowledges technical support from Tokyo Tech's Semiconductor and MEMS Processing Center.

Further investigations are planned to test the new device using various mouse organ tissues. The findings open up a new direction for plasmonic-based THz imaging of biological samples, which may eventually lead to the development of improved, non-invasive diagnostic imaging tools.

Tokyo Institute of Technology

Related Technology Articles from Brightsurf:

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.