Nanotechnology and sunlight clear the way for better visibility

March 05, 2019

Anyone who skis, wears glasses, uses a camera or drives a car is familiar with the problem: if you come into a humid environment from the cold, your eyewear, camera lens or windshield can quickly fog up. Researchers at ETH Zurich have now developed a new transparent material coating that greatly reduces this effect. Just a few nanometres thick, their durable coating is made of gold nanoparticles embedded in non-conductive titanium oxide.

"Our coating absorbs the infrared component of sunlight along with a small part of the visible sunlight and converts the light into heat," explains Christopher Walker, a doctoral student in ETH Professor Dimos Poulikakos's group and lead author of the study. This heats the surface up by 3 to 4 degrees Celsius. It is this difference in temperature that prevents fogging.

Passive heating

Heat is also the answer to the problem of fogging on car windows. Warm air from the in-vehicle heating system heats the front windscreen, while the rear window is fitted with a grid of electrical heating elements. But unlike these methods, the ETH researchers' new coating works passively. Since the only energy source required is the sun, their coating is especially suitable for wearable items such as glasses and goggles.

Efstratios Mitridis, another doctoral student in Poulikakos's group, explains what makes the new surface coating so special: "Normally, it's dark surfaces that absorb light and convert it into heat," he says, "but we've created a transparent surface that has the same effect."

Better than anti-fog sprays

Condensation occurs on a surface whenever there is a sudden drop in temperature or increase in humidity, forming tiny droplets of water that disperse incident light in different directions in much the same way as atmospheric fog. As an alternative to using heat to prevent fogging, susceptible surfaces can be coated with hydrophilic agents. Because they attract water, these agents ensure that the condensation forms an even thin film of liquid over the surface rather than separate droplets. Anti-fog sprays for glasses usually work on this principle.

Now, tests have shown that when exposed to sunlight, fogged surfaces coated with gold nanoparticles and titanium oxide clear four times faster than surfaces treated with a normal anti-fog agent. "Spray treatments often lose their effect after a while because the anti-fog film dries up or becomes unevenly distributed," Walker says. "A durable coating like ours lasts much longer than a spray treatment, which you have to apply virtually on a daily basis," he adds.

The ETH scientists are now planning to bring their new method to market, in collaboration with a partner from industry. "We're looking to refine our already robust coating to ensure it lasts for years, and we want to take the technology from lab scale to industry scale," Walker says. Their coating has a huge range of potential applications, including car windshields and rear-view mirrors as well as ski goggles and diving masks.
-end-
Video: https://youtu.be/3Z17TzRP1cM

Reference

Walker C, Mitridis E, Kreiner T, Eghlidi H, Schutzius TM, Poulikakos D: Transparent Metasurfaces Counteracting Fogging by Harnessing Sunlight, Nano Letters, 28 January 2019, doi: 10.1021/acs.nanolett.8b04481 [http://dx.doi.org/10.1021/acs.nanolett.8b04481]

ETH Zurich

Related Gold Nanoparticles Articles from Brightsurf:

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells
Researchers published a seminal study in Nature Communications that demonstrates for the first time a method of biosynthesizing plasmonic gold nanoparticles within cancer cells, without the need for conventional bench-top lab methods.

From nanocellulose to gold
When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties.

Gold nanoparticles to save neurons from cell death
An international research team coordinated by Istituto Italiano di Tecnologia in Lecce (Italy) has developed gold nanoparticles able to reduce the cell death of neurons exposed to overexcitement.

A potential breakthrough in obesity medicine with the help of gold nanoparticles
A team of researchers in Korea believes to have discovered a synthetic gold-based compound which may help patients with obesity.

Peppered with gold
Terahertz waves are becoming more important in science and technology.

Gold nanoparticles uncover amyloid fibrils
EPFL scientists have developed powerful tools to unmask the diversity of amyloid fibrils, which are associated with Alzheimer's disease and other neurodegenerative disorders.

Gold nanoparticles detect signals from cancer cells
A novel blood test that uses gold nanoparticles to detect cancer has also been shown to identify signals released by cancer cells.

What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.

Gold nanoparticles shown to be safe and effective treatment for prostate cancer
Bio-compatible gold nanoparticles designed to convert near-infrared light to heat have been shown to safely and effectively ablate low- to intermediate-grade tumors within the prostate, according to a study conducted at the Icahn School of Medicine and published in the journal Proceedings of the National Academy of Sciences.

Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.

Read More: Gold Nanoparticles News and Gold Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.