Nav: Home

Scientists study neutron scattering for researching magnetic materials

March 05, 2019

Physicists from the University of Luxembourg and their research partners have demonstrated for the first time in a comprehensive study how different magnetic materials can be examined using neutron scattering techniques. The scientists have published their insights in "Reviews of Modern Physics," the renowned science journal of the American Physical Society.

From computers to loudspeakers to electric cars and wind turbines, most electronic devices contain magnetic materials. Understanding why magnetic materials have certain properties is crucial to refining these technologies. "The mesoscopic length scale, which is the regime between a nanometre and a micrometre, determines the properties of many materials. Elements in the microstructure of a material, such as the grain boundaries between crystal grains, have a major influence on the thermal, electric, magnetic and mechanical properties of a metal," explains Andreas Michels, Associate Professor in Physics and Materials at the University of Luxembourg and one of the main authors of the paper.

Perhaps the most important method for examining processes at this level is neutron scattering. "Using neutron scattering techniques, you can get an inside look at these materials, similar to using an X-ray on other materials," explains Michels. In order to achieve this result, the scientists first bombard samples of a material with a neutron beam. Magnetic interaction with the sample causes the neutrons to be diverted from their normal course. This scattering is determined through a detector. Using theoretical models, the scientists can then draw conclusions about the microstructure of the materials based on the pattern of the scattered neutrons.

The review paper, which was produced in cooperation with researchers at Technical University of Munich, the University of Notre Dame, the University of Minnesota, the Institut Laue-Langevin and the Helmholtz-Zentrum Geesthacht, focuses on analysis techniques. "For the first time, we undertook a comprehensive study to determine which broad class of materials can be researched using neutron scattering techniques," says Andreas Michels. "Among other things, we are interested in superconductors, permanent magnets, shape-memory alloys, ferrofluids - almost the whole spectrum of magnetic materials from specific uses to fundamental research in solid-state physics."

The results of the work can be used by physicists and material researchers to get an overview of the range of applications for neutron scattering technology, but also by engineers to make predictions about load-bearing capacity, wear and tear, and the qualities of materials under changing conditions.

University of Luxembourg

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".