Nav: Home

Electrical signals kick off flatworm regeneration

March 05, 2019

Unlike most multicellular animals, planarian flatworms can regrow all their body parts after they are removed. This makes them a good model for studying the phenomenon of tissue regeneration. They are also useful for exploring fundamental questions in developmental biology about what underlies large-scale anatomical patterning.

In a study publishing March 5 in Biophysical Journal, scientists report that electrical activity is the first known step in the tissue-regeneration process, starting before the earliest known genetic machinery kicks in and setting off the downstream activities of gene transcription needed to construct new heads or tails.

"It's incredibly important to understand how cells make decisions about what to build," says senior author Michael Levin (@drmichaellevin), director of the Allen Discovery Center at Tufts University. "We've found that endogenous electrical signals enable cells to communicate and make decisions about their position and overall organ structure, so they know which genes to turn on."

The species used in the study was Dugesia japonica. When parts of this flatworm are removed, the remaining tissues regrow the missing pieces at the correct ends--whether a head or a tail. Previous studies had shown that about six hours after amputation, the first genes associated with regrowing a missing part are turned on. But until now, it wasn't known what happened before that or what mechanisms control which genes get turned on.

In the current experiments, led by Fallon Durant, who was a graduate student at the time, the heads and tails of the flatworms were removed. The researchers used voltage-sensitive fluorescent dyes that were able to indicate the various electrical potentials of the different regions. "You can literally see the electrical activity in the tissue," Levin says. "Within a few hours of when this activity is seen, we can start to measure changes in gene expression."

To show that a specific voltage pattern was responsible for turning on correct genes for each wound site, the team altered the resting potentials of cells at the different ends of the worms and observed the effects. By inducing ion flows that set each wound site to head- or tail-specific voltage patterns, they can create flatworms with two heads and no tail. They also studied the relationship between this electrical signal and the well-known Wnt protein signaling pathway, functioning downstream of the voltage-mediated decision machinery.

"Most of the people working on this problem study genetic and biochemical signals like transcription factors or growth factors," Levin says. "We've decided to focus on electrical signals, which are a very important part of cell-to-cell communication." He compares the electrical signals his group studies to those that occur in the brain. "A stimulus comes in and an electrical event triggers biochemical second-messenger events in the cells and downstream activity of the electrical network, such as decision making or forming a memory," he notes. "This electrical system is super ancient and very highly conserved."

Future research will focus on breaking down these signals in much more detail. For example, researchers would like to know how regenerated tissues make decisions about the size, shape, and scale of the new parts that they grow and how the bioelectric circuits store changes in body patterning, as is seen in two-headed worms that continue to make two-headed animals in subsequent rounds of regeneration.

"With perhaps the exception of infectious disease, the majority of problems in health and biomedicine hinge on understanding how cells get together to build a specific organ or other structure," Levin concludes. "If we can figure out how to manipulate these processes, we can start to develop ways to correct birth defects and address everything from traumatic injury to degenerative diseases, aging, and cancer."
This research was funded by an Allen Discovery Center Award from the Paul G. Allen Frontiers Group, the G. Harold and Leila Y. Foundation, the Templeton Foundation, and the National Science Foundation.

Biophysical Journal, Durant et al.: "The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity"

Biophysical Journal (@BiophysJ), published by Cell Press for the Biophysical Society, is a bimonthly journal that publishes original research and reviews on the most important developments in modern biophysics-a broad and rapidly advancing field encompassing the study of biological structures and focusing on mechanisms at the molecular, cellular, and systems levels through the concepts and methods of physics, chemistry, mathematics, engineering, and computational science. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at