Nav: Home

Nuclear medicine imaging monitors effectiveness of therapy for melanoma patients

March 05, 2019

Nuclear medicine imaging with PET/CT can monitor the effectiveness of immunotherapy treatment for metastatic melanoma and predict outcome. In this way, a patient's therapy can be more effectively tailored to his or her personal response.

Metastatic melanoma is one of the deadliest skin cancers, so determination of a treatment's effectiveness is essential but can be tricky. A study featured in the March issue of The Journal of Nuclear Medicine demonstrates that 18F-FDG positron emission tomography/computed tomography (PET/CT) can monitor immunotherapy with ipilimumab, a "checkpoint inhibitor" that allows the immune system to attack cancer cells.

"Checkpoint inhibitor therapy is now a standard therapy for metastatic melanoma," explains Wolfgang A. Weber, MD, of Technical University Munich, Germany (formerly of Memorial Sloan Kettering Cancer Center). "However, there were concerns about whether FDG PET/CT could be used to monitor tumor response to this immunotherapy, because inflammatory reactions to the immunotherapy may cause false positive findings. The present study shows that tumor response to checkpoint inhibitor therapy with ipilimumab can be assessed accurately by FDG PET after completion of ipilimumab therapy."

Clinical studies have shown that ipilimumab, when compared with chemotherapy, can significantly improve the survival of patients with metastatic melanoma; however, this is true for only 15 to 20 percent of melanoma patients. The ability to accurately assess a patient's response to ipilimumab therapy would allow physicians to adjust his or her course of treatment for maximum effectiveness.

To overcome the difficulties of assessing tumor response to ipilimumab and other checkpoint inhibitors, the researchers developed new response criteria. These new criteria require confirmation of tumor progression on a follow-up scan.

For this retrospective study, 60 patients with metastatic melanoma received FDG PET/CT scans pre- and post-treatment. Tumor response was assessed by the change in the sum of SULpeak (standard uptake value normalized to lean body mass) of up to 5 lesions (PERCIST5). A second analysis (PERCIST1) was done of the lesion with the highest SULpeak between the baseline and follow-up scan. New lesions on PET that appeared suspicious for metastases were considered progressive metabolic disease. To assess new inflammatory lesions, the team applied their novel immunotherapy-modified PERCIST with a 5-lesion analysis (imPERCIST5). In imPERCIST5, a new lesion on FDG PET/CT is considered progressive disease only if it increases the sum of SULpeak by more than 20%.

The results of the study show that assessment of tumor response to ipilimumab treatment using PERCIST correlated significantly with survival of patients with advanced melanoma. The slight modifications of PERCIST to imPERCIST5 further improved the prognostic value of response assessment by 18F-FDG PET/CT.

Weber points out, "FDG PET/CT is routinely used to stage melanoma. The present study suggests that it also can be used to monitor tumor response to ipilimumab therapy and predict outcome. FDG PET can identify patients with favorable and unfavorable prognoses--leading to therapy escalation (e.g., combination immunotherapy) or de-escalation (e.g., reduced number of therapy cycles)." In this way, a patient's therapy can be more effectively tailored to his or her personal response.
-end-
Authors of 18F FDG PET/CT for "Monitoring of Ipilimumab Therapy in Patients with Metastatic Melanoma" include Kimiteru Ito, Rebecca Teng, Heiko Schöder, John L. Humm, Ai Ni, Laure Michaud, Reiko Nakajima, Rikiya Yamashita, Jedd D. Wolchok, and Wolfgang. A. Weber, Memorial Sloan Kettering Cancer Center, New York, New York.

This study was made available online in November 2018 ahead of final publication in print in March 2019.

For more information or to schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or rmaxey@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine and Molecular Imaging

Related Immunotherapy Articles:

Barrier Proteins in Tumors are Possible Key to Immunotherapy Success
By comparing variations in protein expression in tumor samples from a single melanoma patient, researchers from the Johns Hopkins Bloomberg~Kimmel Institute and the Memorial Sloan-Kettering Cancer Center say their findings have the potential to reveal some of the mechanisms underlying response or resistance to immunotherapy drugs.
Discovery could guide immunotherapy for lung cancer
Scientists have discovered a new type of immune cell that could predict which lung cancer patients will benefit most from immunotherapy treatment, according to a Cancer Research UK funded study* published today (Monday) in Nature Immunotherapy.
Genetic mutations predict patient response to immunotherapy
Results of a new clinical study establish particular genetic defects in tumors as clinical indicators for successful response to a type of immunotherapy called PD-1 blockade.
'Immunoswitch' particles may be key to more-effective cancer immunotherapy
Scientists at Johns Hopkins have created a nanoparticle that carries two different antibodies capable of simultaneously switching off cancer cells' defensive properties while switching on a robust anticancer immune response in mice.
Early research suggests first immunotherapy for mesothelioma on the horizon
Malignant pleural mesothelioma or MPM is a rare cancer, but its incidence has been rising.
A new T-cell population for cancer immunotherapy
Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells.
Immunotherapy target suppresses pain to mask cancer
Duke University researchers found that a molecule called PD-L1, which is blocked by the immunotherapy drug nivolumab, acts not only on immune cells but also on the nerve cells that signal pain.
Immunotherapy against bee stings in some cases incomplete
The preparations that are used for allergen immunotherapy against bee sting allergies do not always contain all the relevant venom components.
New imaging method may predict immunotherapy response early
A noninvasive PET imaging method that measures granzyme B, a protein released by immune cells to kill cancer cells, was able to distinguish mouse and human tumors that responded to immune checkpoint inhibitors from those that did not respond early in the course of treatment.
T cell revival correlates with lung cancer response to PD-1 immunotherapy
In lung cancer patients who were taking immunotherapy drugs targeting the PD-1 pathway, testing for CD8 T cell activation in their blood partially predicted whether their tumors would shrink.

Related Immunotherapy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...