Sacrificing accuracy to see the big picture

March 05, 2019

WASHINGTON, D.C., March 5, 2019 -- During their first year of life, infants can recognize patterned sound sequences. As we grow, we develop the ability to pick out increasingly complex patterns within streams of words and musical notes. Traditionally, cognitive scientists have assumed that the brain uses a complicated algorithm to find links between disparate concepts, thereby yielding a higher-level understanding.

Researchers at the University of Pennsylvania -- Christopher Lynn, Ari Kahn and Danielle Bassett -- are building an entirely different model, indicating that our ability to detect patterns might stem, in part, from the brain's desire to represent things in the simplest way possible.

The brain does more than just process incoming information, said Lynn, a physics graduate student. "It constantly tries to predict what's coming next. If, for instance, you're attending a lecture on a subject you know something about, you already have some grasp of the higher-order structure. That helps you connect ideas together and anticipate what you'll hear next."

The new model offers striking insights on human cognition, suggesting that people can and indeed do make mistakes in detecting individual components of a pattern in order to catch a glimpse of the bigger picture. For example, Lynn explained, "if you look at a pointillist painting up close, you can correctly identify every dot. If you step back 20 feet, the details get fuzzy, but you'll gain a better sense of the overall structure." The brain may well adopt a similar strategy, he said.

To test its theory, the team developed an experiment in which people view a computer screen depicting a row of five squares and then press one or two keys to match the display they see. The researchers timed the responses, concluding that people hit the correct keys more quickly when they anticipate what's coming next.

As part of the experimental setup, each stimulus presented to a subject could be viewed as a node in a network, with one of four adjacent nodes representing the next stimulus. The networks come in two forms -- a "modular graph" consisting of three linked pentagons and a "lattice graph" consisting of five linked triangles. Subjects reacted more quickly when presented with the modular graph, suggesting they could better discern its underlying structure and, hence, better anticipate the image to follow.

Ultimately, the experiment is designed to measure a quantity the authors call beta (β), which varies from subject to subject, assuming lower values in people prone to making errors and higher values in those inclined toward accuracy. The Pennsylvania group plans to acquire brain images from fMRI scans later this year to see if the brains of people found to have different values of β are, in fact, "wired differently."
-end-
The 2019 APS March Meeting presentation "Structure from noise: Mental errors yield abstract representations of events," by Christopher Lynn, Ari E. Kahn and Danielle Bassett, will take place Tuesday, March 5, at 3:06 p.m. in room 261 of the Boston Convention and Exhibition Center. ABSTRACT: https://meetings.aps.org/Meeting/MAR19/Session/H66.4

MORE MEETING INFORMATION

The American Physical Society (APS) March Meeting is a major international conference and the largest physics meeting of the year. In 2019, the APS March Meeting will convene March 4-8 at the Boston Convention and Exhibition Center.

USEFUL LINKS

Register as Press: https://goo.gl/forms/ur9dE24zCO1IVsLu2

Press Site: https://www.aps.org/meetings/march/press.cfm

Meeting Abstracts: http://meetings.aps.org/Meeting/MAR19/APS_epitome

Main Meeting Page: https://www.aps.org/meetings/march/

Hotel and Travel: https://www.aps.org/meetings/march/hotel-travel.cfm

PRESS REGISTRATION

APS will provide free registration to all staff journalists representing media organizations, professional freelance journalists on assignment, and student journalists who are attending the meeting for the express purpose of gathering and reporting news and information. Press registration grants full access to all scientific sessions, to the press room, and to the press conferences. We will also provide complimentary press registration to university press officers, PIOs and other professional media relations staff. For press related questions about the APS March Meeting, email media@aps.org.

PRESS CONFERENCES

A series of press conferences on newsworthy research will be webcast live from the conference on Monday, March 4 through Thursday, March 7. A schedule will be released the week before the conference. Members of the media should register in advance at https://webcast.apswebcasting.com/go/aps-march-19.

ABOUT APS

The American Physical Society is a nonprofit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. APS represents over 55,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world. Society offices are located in College Park, Maryland (Headquarters), Ridge, New York, and Washington, D.C. Read more: https://www.aps.org/

American Physical Society

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.