Nav: Home

Freeze-dried soil is more suitable for studying soil reactive nitrogen gas emissions

March 05, 2020

Earth's atmosphere and climate change are strongly affected by gas exchange between land and atmosphere. Reactive nitrogen (Nr) gas emissions from soils, e.g., nitrous acid (HONO) and nitric oxide (NO), play a significant role in atmospheric chemistry and also constitute a key process of the global nitrogen (N) cycle.

To understand the underlying mechanisms of soil Nr emissions, air-dried or oven-dried soils are commonly used in the laboratory. To date, few studies have compared the effects of different drying methods on soil Nr gas fluxes and N fractions.

In a paper recently published in Atmospheric and Oceanic Science Letters, Dr. Dianming Wu, from the School of Geographic Sciences, East China Normal University, and his coauthors, try to identify the best approach to treat soil samples.

"We evaluated soil water content, pH, (in)organic N content, and Nr gas fluxes of air-dried, freeze-dried, oven-dried, and fresh soils from different land-use types," says Dr. Wu.

According to this study, all drying methods increased the soil ammonium, nitrate, and dissolved organic N contents compared with fresh soil. However, freeze-dried soil had the closest soil pH value, the maximum HONO and NO flux and total emissions during a full wetting-drying cycle with fresh soil, while air-drying and oven-drying significantly increased Nr gas fluxes. Therefore, global soil Nr gas emissions might be overestimated if air- and oven-dried soil are used.

The study concludes that all drying methods should be considered for use in studies on the land-atmosphere interface and biogeochemical N cycling, whereas the freeze-drying method might be better for studies involving the measurement of soil Nr gas fluxes.

"The important implication of the finding is that we need to carefully evaluate the previous understanding of the mechanism of biogeochemical nitrogen cycling based on different drying methods," concludes Dr. Wu.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at