ALMA spots metamorphosing aged star

March 05, 2020

An international team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has captured the very moment when an old star first starts to alter its environment. The star has ejected high-speed bipolar gas jets which are now colliding with the surrounding material; the age of the observed jet is estimated to be less than 60 years. These features help scientists understand how the complex shapes of planetary nebulae are formed.

Sun-like stars evolve to puffed-up Red Giants in the final stage of their lives. Then, the star expels gas to form a remnant called a planetary nebula. There is a wide variety in the shapes of planetary nebulae; some are spherical, but others are bipolar or show complicated structures. Astronomers are interested in the origins of this variety, but the thick dust and gas expelled by an old star obscure the system and make it difficult to investigate the inner-workings of the process.

To tackle this problem, a team of astronomers led by Daniel Tafoya at Chalmers University of Technology, Sweden, pointed ALMA at W43A, an old star system around 7000 light years from Earth in the constellation Aquila, the Eagle.

Thanks to ALMA's high resolution, the team obtained a very detailed view of the space around W43A. "The most notable structures are its small bipolar jets," says Tafoya, the lead author of the research paper published by the Astrophysical Journal Letters. The team found that the velocity of the jets is as high as 175 km per second, which is much higher than previous estimations. Based on this speed and the size of the jets, the team calculated the age of the jets to be less than a human life-span.

"Considering the youth of the jets compared to the overall lifetime of a star, it is safe to say we are witnessing the 'exact moment' that the jets have just started to push through the surrounding gas," explains Tafoya. "The jets carve through the surrounding material in as little as 60 years. A person could watch their progress throughout their lifetime."

In fact, the ALMA image clearly maps the distribution of dusty clouds entrained by the jets, which is telltale evidence that it is impacting on the surroundings.

The team suggests how this entrainment could be the key to formimg a bipolar-shaped planetary nebula. In their scenario, the aged star originally ejects gas spherically and the core of the star loses its envelope. If the star has a companion, gas from the companion pours onto the core of the dying star, and a portion of this new gas forms the jets. Therefore, whether or not the old star has a companion is an important factor to determine the structure of the resulting planetary nebula.

"W43A is one of the peculiar so called 'water fountain' objects," says Hiroshi Imai at Kagoshima University, Japan, a member of the team. "These are old stars which show characteristic radio emission from water molecules. Our ALMA observations lead us to think that the water heated to generate the radio emission is located the interface region between the jets and the surrounding material. Perhaps all these 'water fountain' sources consist of a central binary system which has just launched a new, double jet, just like W43A."

The team are already working on new ALMA observations of other, similar stars. They are hoping to gain new insight into how planetary nebulae form, and what lies in the future for stars like the Sun.

"There are only 15 'water fountain' objects identified to date, despite the fact that more than 100 billion stars are included in our Milky Way Galaxy," explains José Francisco Gómez at Instituto de Astrofísica de Andalucía, Spain. "This is probably because the lifetime of the jets is quite short, so we are very lucky to see such rare objects."
The research team members are:

Daniel Tafoya (Calmers University of Technology), Hiroshi Imai (Kagoshima University), José F. Gómez (Instituto de Astrofísica de Andalucía, CSIC), Jun-ichi Nakashima (Sun Yat-sen University), Gabor Orosz (University of Tasmania/Xinjiang Astronomical Observatory), and Bosco H. K. Yung (Nicolaus Copernicus Astronomical Center)

National Institutes of Natural Sciences

Related Astronomers Articles from Brightsurf:

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Astronomers capture a pulsar 'powering up'
A Monash-University-led collaboration has, for the first time, observed the full, 12-day process of material spiralling into a distant neutron star, triggering an X-ray outburst thousands of times brighter than our Sun.

Astronomers discover new class of cosmic explosions
Analysis of two cosmic explosions indicates to astronomers that the pair, along with a puzzling blast from 2018, constitute a new type of event, with similarities to some supernovae and gamma-ray bursts, but also with significant differences.

Astronomers discover planet that never was
What was thought to be an exoplanet in a nearby star system likely never existed in the first place, according to University of Arizona astronomers.

Canadian astronomers determine Earth's fingerprint
Two McGill University astronomers have assembled a 'fingerprint' for Earth, which could be used to identify a planet beyond our Solar System capable of supporting life.

Astronomers help wage war on cancer
Techniques developed by astronomers could help in the fight against breast and skin cancer.

Astronomers make history in a split second
In a world first, an Australian-led international team of astronomers has determined the precise location of a powerful one-off burst of cosmic radio waves.

Astronomers witness galaxy megamerger
Using the Atacama Large Millimeter/submillimeter Array (ALMA), an international team of scientists has uncovered a startlingly dense concentration of 14 galaxies that are poised to merge, forming the core of what will eventually become a colossal galaxy cluster.

Astronomers discover a star that would not die
An international team of astronomers has made a bizarre discovery; a star that refuses to stop shining.

Astronomers spun up by galaxy-shape finding
For the first time astronomers have measured how a galaxy's spin affects its shape -- something scientists have tried to do for 90 years -- using a sample of 845 galaxies.

Read More: Astronomers News and Astronomers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to