Pesticides increase the risk of schistosomiasis, a tropical disease

March 05, 2020

Schistosomiasis is a severe infectious disease caused by parasitic worms. As an intermediate host, freshwater snails play a central role in the life cycle of the parasite. In a recent study published in the journal Scientific Reports, researchers from the Helmholtz Centre for Environmental Research (UFZ) in cooperation with the Kenya-based International Centre of Insect Physiology and Ecology (icipe) succeeded in proving that snail populations in waterbodies contaminated with pesticides were significantly larger than in uncontaminated waterbodies. The pesticides used in agriculture may well be an outright driver for the risk of infection with schistosomiasis, the researchers warn.

According to WHO estimates, there are around 200 to 300 million people infected with schistosomiasis (also known as bilharzia) worldwide; around 200,000 die each year of the consequences. The disease also has far-reaching socio-economic effects in the tropical regions concerned: infected individuals are often unable to work and children are too weak to be able to go to school. It is transmitted through the skin following exposure to infected water. The pathogen is a parasitic trematode worm of the genus Schistosoma - the "blood fluke". To date, five different kinds of Schistosoma that can infest humans have been identified. Around two centimetres in length, the worms become lodged in the intestinal wall, the bladder or the liver. The consequences include inflammation and severe organ damage that can lead to death. Schistosomiasis can be treated with an anti-worm medication. But treatment does not protect against reinfection. "Contaminated waterbodies are the problem," says Professor Matthias Liess, Head of the Department of System Ecotoxicology at the UFZ. "Before schistosomiasis can be contained, something has to be done to prevent the proliferation of the pathogens in bodies of water."

Matthias Liess and his team at the UFZ are carrying out research into how pesticides affect biological communities in bodies of running water. "Sensitive insect species disappear whereas the populations of more resistant species such as freshwater snails proliferate - and this starts happening even at extremely small concentrations of pesticides that are deemed harmless in the pertinent risk assessment," Liess explains. "In tropical waterbodies - and even in Corsica since 2011 - freshwater snails play a central role as an intermediate host in the life cycle of the parasitic trematode worm. If its eggs enter a waterbody through the excreta of infected persons, miracidia (larvae) hatch in the water and then reproduce asexually in freshwater snails. One larva can produce several thousand cercariae, the next larval stage, which then pass into the water. If they reach a human host, they penetrate through the skin into the body, where they develop into adult worms.

In their recent study sponsored by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), the researchers participated in field studies to examine 48 bodies of running water in the environs of Kenya's Lake Victoria for pesticide contamination, composition of biological communities and occurrence of snails. "It became apparent that in those places where there was no pesticide contamination and the biological community of the waterbody was in a natural balance there were only few snails," says Liess. "If it was possible to detect pesticides in the waterbody, the communities were dominated by snail populations." Laboratory tests further revealed that the species of snails that act as an intermediate host in the life cycle of the trematode worm Schistosoma were extremely tolerant of high concentrations of pesticides. Using model studies, the researchers looked for additional factors that favour snails in ecosystems contaminated with pesticides. It was revealed that the snail populations grow predominantly due to the lack of food competitors. "Insect larvae living in the water that graze the algae cover of rocks, just like the snails, are severely decimated by pesticide contamination or disappear completely. This results in optimum food conditions for the snails, which allows them to proliferate," Liess explains. "And the large number of potential intermediate hosts is, in turn, ideal for the trematode worm Schistosoma to spread."

One measure that would help reduce the level of schistosomiasis pathogen contamination of waterbodies in the affected regions is the construction of effective sewage plants, which would reduce the input of untreated, contaminated wastewater. But, on its own, this measure would not be sufficient in the researchers' opinion. "Even if only a few pathogens enter the water but meet with a huge snail population there, the problem is still unresolved," says Liess. "For this reason, it is important to make adjustments to both parameters and take measures to reduce pesticide contamination in order to effectively contain the risk of contracting schistosomiasis." For example, creating buffer strips adjacent to agricultural land or dispensing with the use of pesticides in the direct vicinity of waterbodies would promote significant shifts in the composition of species towards a natural biological community with only few snails, say the researchers. "With our study, we were able to clearly demonstrate that even low pesticide concentrations constitute a serious environmental risk and, in this respect, not only contribute to the decline in insect populations but also indirectly promote dangerous diseases in humans," says Liess. "We hope that our findings will contribute to reducing or avoiding the future use of pesticides near waterbodies in schistosomiasis hotspots and thus making it possible to lower the risk of infection."

Helmholtz Centre for Environmental Research - UFZ

Related Pesticides Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

In pursuit of alternative pesticides
Controlling crop pests is a key element of agriculture worldwide, but the environmental impact of insecticides is a growing concern.

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame
The average size of a dingo is increasing, but only in areas where poison-baits are used, a collaborative study led by UNSW Sydney shows.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Honeybee lives shortened after exposure to two widely used pesticides
The lives of honeybees are shortened -- with evidence of physiological stress -- when they are exposed to the suggested application rates of two commercially available and widely used pesticides.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.

Read More: Pesticides News and Pesticides Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to