Two-faced bacteria

March 05, 2020

The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health. Recent studies have linked the gut microbiome with several beneficial properties, such as aiding in the development of our immune system and warding off pathogen infections.

Many deadly pathogens are motile, meaning they can move spontaneously, and their ability to infect is based on their response to different environmental cues. Major cues for the pathogens are the molecules (or metabolites) produced in the gut. Pathogens interpret distinctive metabolites differently and are either attracted or repelled by them (i.e., migrate toward or away from them).

The metabolite indole is an example of a microbiome-produced small molecule that is abundant in the gut and is a powerful repellent for bacteria. According to Dr. Pushkar Lele, assistant professor, and Dr. Arul Jayaraman, professor, in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, this fact led to a simple question: "Why does indole - which is produced by many of our beneficial bacterial species - not repel the good gut bacteria along with the bad ones?"

To answer this question, a research team including Lele, Jayaraman and Dr. Michael Manson from the Department of Biology at Texas A&M, studied the response of the beneficial gut bacteria, E. coli to indole. In an article in the Proceedings of the National Academy of Sciences, the researchers describe the discovery of a previously unknown response to indole, in which the molecule seems to both repel and attract bacteria. This Janus response - named after the Roman god Janus who had two faces, one looking into the future and one looking into the past - has to do with the way indole is interpreted by the bacterial chemo-receptors.

"We found that there are two receptors in E. coli that sense indole," Lele said. "One senses indole as a repellent, and one senses indole as an attractant. Sustained exposure to high concentrations of indole desensitizes the receptor that interprets it as a repellent. This leads to indole being sensed only as an attractant."

According to Jayaraman, the Janus response displays a large amount of sophistication, and the discovery could lead to a better understanding of the complexities of the gut microbiome. "Beneficial bacteria aggregate on the surfaces within the gut based on some common feature," said Jayaraman. "We propose that one such feature is the ability to produce or sense indole. Bacteria that produce indole could group together and be attracted to niches where indole concentrations are high."

Since the bacteria that produce indole in the gut typically are enmeshed in mucus layers among other bacteria, the indole concentration drops as one gets further away from the source of indole. Since pathogens tend to pass through the gut relatively far from the bacteria that produce indole, they are not likely to encounter high concentrations of indole for a sustained period. Therefore, they are not sensitized to indole, and any indole they encounter repels them.

Studies continue to show that it is important to have a diverse mix of beneficial bacteria in the gut. According to Lele, this research is a step toward understanding how the gut microbiome might change with time. "The key question is, 'How do different species of bacteria colonize specific niches?' We have addressed a part of that question," said Lele. "The next step is to examine the response of multiple species of bacteria to a mix of different metabolites that are found in the gut."
-end-


Texas A&M University

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.