Study: Tuberculosis bacteria trigger cough, facilitating spread

March 05, 2020

DALLAS - March 5, 2020 - The bacteria that cause the deadly lung disease tuberculosis appear to facilitate their own spread by producing a molecule that triggers cough, a new study led by UTSW researchers shows. The findings, published online March 5, 2020, in Cell, could lead to new ways to prevent the spread of tuberculosis, which is responsible for the death of more than 1.5 million people per year worldwide.

People have known since ancient times that coughing is a primary symptom of tuberculosis and that cough allows for the spread of disease from person to person. However, the cause of tuberculosis-related coughs has been unclear says study leader Michael Shiloh, M.D., Ph.D., an associate professor in UTSW's Department of Internal Medicine's Division of Infectious Disease and Department of Microbiology. The prevailing hypothesis has been that coughing is triggered by infection-induced lung irritation and inflammation, but this has never been definitively proved.

Shiloh and his colleagues had a different idea: They speculated that the bacterial agent that causes tuberculosis, mycobacterium tuberculosis, itself might produce a substance that triggers nerves in the airway responsible for causing someone with the disease to cough, thereby allowing for propagation of disease.

To test this idea, the team relied on guinea pigs, a lab animal often used to study both tuberculosis and cough. Although guinea pigs have been used as an experimental model for tuberculosis infection for more than a century, it was not clear whether the disease causes these animals to cough. To answer this question, Shiloh and his colleagues placed guinea pigs infected with tuberculosis into special chambers that registered pressure and volume changes caused by coughing. Sure enough, tuberculosis-infected animals coughed significantly more than those that were tuberculosis-free.

To determine whether the bacteria produce a substance that can trigger coughing, the researchers isolated and tested various components from mycobacterium tuberculosis, trying to determine if these components could do two things. First, could the components on their own make guinea pigs cough? And second, could the components make pain-sensing nerve cells grown in the lab - the type of cell responsible for stimulating coughing in the lungs - behave as if they were being triggered to induce a cough reflex?

After a series of experiments with components from mycobacterium tuberculosis as well as from a large assortment of other mycobacterial species, Shiloh's team ultimately identified the mycobacterial cell-surface fatty molecule known as sulfolipid-1 (SL-1) as the principal molecule that activates neurons grown in the lab. This response also occurred in human pain-sensing nerve cells, suggesting that SL-1 and its function has been conserved through evolution among different mammalian species. Importantly, when guinea pigs were exposed to purified SL-1, the animals indeed coughed.

To show that SL-1 is the culprit behind cough, the researchers infected guinea pigs with a genetically altered strain of mycobacterium tuberculosis that cannot produce SL-1. These guinea pigs developed all the typical symptoms of tuberculosis, but did not cough, which led the research team to conclude that SL-1 is critical for triggering cough during tuberculosis infection.

Together, Shiloh says, the findings suggest that tuberculosis-causing bacteria produce SL-1 primarily to stimulate a cough reflex in order to propagate the spread of mycobacteria from infected to uninfected people. Eventually, he says, if research shows that suppressing cough is not harmful to infected individuals, scientists may be able to develop a way to prevent transmission by either counteracting SL-1 or preventing its production.

"In many places where tuberculosis is endemic, people with active tuberculosis are frequently not admitted to the hospital, but simply sent home with antibiotics. People can cough for months and spread disease even when they are receiving appropriate treatment," he says. "Someday, doctors may give antibiotics in conjunction with a medication that prevents coughing, which in turn could prevent spread."

Conversely, he adds, this molecule could be harnessed to help patients cough in conditions where it's beneficial, such as cystic fibrosis or for patients who require breathing tubes. Administering an aid that encourages coughing could help relieve the buildup of thick mucus in patients' lungs.
Shiloh collaborated with UT Dallas on the study. Other UTSW scientists who participated include Cody R. Ruhl, Breanna L. Pasko, Haaris S. Khan, Lexy M. Kindt, Chelsea E. Stamm, Luis H. Franco, Connie Hsia, Min Zhou, Colton R. Davis, Tian Qin, and Laurent Gautron.

This work is supported by the Burroughs Wellcome Fund 1017894, Welch Foundation I-1964-20180324 (MUS) and I-2010-20190330, NIH R01 NS104200, NIH R01 NS065926, NIH U01 AI125939, NIH U19 AI142784, NIH R21 AI137545, NIH 5T32AI005284-40, NIH T32AI007520, and NIH T32GM127216. Shiloh holds the Professorship in Infectious Diseases, in honor of James P. Luby, M.D.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 14 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

UT Southwestern Medical Center

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to