Nav: Home

Layered solar cell technology boosts efficiency, affordability

March 05, 2020

The future's getting brighter for solar power. Researchers from CU Boulder have created a low-cost solar cell with one of the highest power-conversion efficiencies to date, by layering cells and using a unique combination of elements.

"We took a product that is responsible for a $30 billion a year industry and made it 30% better," said Michael McGehee, a professor in the Department of Chemical and Biological Engineering and co-author of a paper, to be published tomorrow in Science, which describes the technology. "That's a big deal."

The researchers took a perovskite solar cell, a crystal structure that's designed to harvest higher energy photons, and layered it on top of a silicon solar cell, which captures more photons in the infrared part of the spectrum - which is made up of radiant energy that we cannot see, but we can feel as heat. Combined, the perovskite raises a 21% silicon solar cell up to an efficiency of 27% - increasing it by a third.

For years, silicon solar cells have been the standard in the solar power industry. But current silicon-based cells only convert 18% to 21% of the sun's energy into usable electricity on average, and they max out at about 26.6%.

This means it now costs more to install the cells than to buy them, said McGehee, a fellow in the Renewable & Sustainable Energy Institute.

The average efficiency of solar panels is lower than the maximum efficiency, because no matter how good an individual, small solar cell is, it will lose about three percentage points when applied over a large panel - kind of like a sports team only being as good as its average player. But if you can raise the overall efficiency, you don't have to install as many panels to get the same amount of power.

What dramatically improves efficiency is to put another solar cell on top of an existing one - and that's exactly what McGehee and his fellow researchers did.

An affordable secret formula

This isn't the first time researchers have layered solar cells to gain efficiency. The concept, also known as tandem or multi-junction solar cells, was first introduced in the 1970s - and the world record for solar cell efficiency is already over 45%. However, it came at a hefty price: $80,000 per square meter, due to the fact the cells were grown one atomic layer at a time, creating one big, single crystal. Probably not a cost the average homeowner or business can afford.

McGehee and his fellow researchers are the pioneers in a new direction of layered solar cells, using perovskites, which cost more than a hundred times less.

They started fewer than 10 years ago with the concept of using less expensive materials on top of the silicon, and at first only achieved about 13% efficiency. But through technological improvements they have been able to more than double that number.

Their secret formula involves a unique triple-halide alloy of chlorine, bromine, and iodine.

In solar cells, there is an ideal bandgap, according to McGehee. This is the space between energy levels in a semiconductor, which electrons jump between and create electrical energy.

Bromine can raise this bandgap, but when used with iodine and exposed to light, these elements don't always stay in place. Previous studies have tried to use chlorine and iodine together, but due to the differing particle sizes of these elements, not enough chlorine could fit into the perovskite crystal structure. But by using different amounts of chlorine, bromine, and iodine, the researchers figured out a way to shrink the crystal structure, allowing more chlorine to fit in - stabilizing and improving the cell's efficiency.

Perovskites are also inexpensive, not energy intensive to make and easy to create in the lab. And even after 1000 hours - or almost 42 days - of intensive light and heat testing, these new solar cells showed a minimal change in their initial efficiency.

With the solar power market growing around 30% per year, efficiency, cost and longevity are major considerations for which new technologies will become mainstream.

McGehee is optimistic about the potential of this wide-bandgap, layered perovskite solar cell.

Not only has it now surpassed the maximum efficiency of a silicon-only solar cell, "we believe it can take us over 30% efficiency and that it can be stable," said McGehee.
-end-
Additional authors of this study include Jixian Xu, co-first author and postdoctoral researcher, Jérémie Werner, postdoctoral researcher, and Daniel Witter, graduate student, in Chemical and Biological Engineering at the University of Colorado Boulder; Caleb Boyd, co-first author, visitor at the University of Colorado Boulder and NREL, and graduate student at Stanford University; as well as researchers from the National Renewable Energy Laboratory, Stanford University, and Arizona State University.

University of Colorado at Boulder

Related Solar Cells Articles:

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.