Monell scientists help identify a missing link in taste perception

March 06, 2013

PHILADELPHIA (March 6, 2013) -- Working with a multidisciplinary consortium of 19 researchers from nine institutions, Monell scientists have provided critical information to identify CALHM1, a channel in the walls of taste receptor cells, as a necessary component in the process of sweet, bitter, and umami (savory) taste perception.

When sweet, bitter and umami molecules reach the tongue, they activate taste receptors in specialized cells called Type II taste cells. "The question that the consortium wanted to answer is, 'how do these taste cells tell the brain that they have detected something?' said Monell taste biologist Michael G. Tordoff, PhD. "This question has been a longstanding missing link in our understanding of taste perception."

The scientists already knew that activation of taste receptors on Type II cells initiates a complex chain of events inside the taste cells. What they found, as reported in the current issue of Nature, is that the final step involves the opening of a pore formed by CALHM1 in the taste cell membrane. The open channel allows molecules of the neurotransmitter ATP to leave the taste cell and relay a signal to adjacent nerve cells connected to the brain.

Monell molecular neurobiologist Ichiro Matsumato, PhD, contributed to the work by showing that the gene for CALHM1 is expressed in Type II taste cells, but not in other types of taste tissue. "Our findings demonstrate that the CALHM1 pore is localized specifically in cells that detect sweet, bitter and umami taste," said Matsumato.

The necessity of CALHM1 for the ability to taste sweet, bitter, and umami was demonstrated in behavioral tests performed by Tordoff. Reasoning that mice lacking the CALMH1 channel would not be able to release ATP to send information about sweet, bitter and umami taste detection to the brain, Tordoff tested the taste preferences of Calhm1 'knockout' mice. Engineered by co-author Philippe Marambaud, PhD, of the Feinstein Institute for Medical Research, the knockout mice lack the gene that codes for CALHM1.

"Like humans, mice with an intact CALHM1 gene avidly drink sucrose and other sweeteners, and avoid bitter compounds such as quinine. However, mice lacking CALHM1 are very unusual," said Tordoff. "These mice treat sweeteners and bitter compounds as if they were water. They behave as if they can't taste them at all."

Responses to salty and sour tastes were not affected by the missing gene because perception of these taste qualities is mediated via a different set of taste cells.

In combination with electrophysiological data contributed by collaborators from other institutions, the findings demonstrate that pannexins and connexins, channel proteins previously thought to be involved in ATP release from taste cells, actually are not necessary for this to happen. "This paper provides compelling data to overturn the previous hypothesis," noted Matsumato. "It's part of what makes science so exciting."

Kevin Foskett, PhD, professor of Physiology at the Perelman School of Medicine, University of Pennsylvania, who with Marambaud is a senior author on the paper, recently identified CALHM1 as an ATP channel and speculated that that it might be involved in taste. "This is an example of a bona fide ATP ion channel with a clear physiological function," said Foskett. "Now we can connect the molecular dots of sweet and other tastes to the brain."

In addition to revealing CALHM1's critical role in sweet, bitter, and umami taste perception, the current work also lends insight into the channel's overall function in other tissues. Originally thought to control calcium levels inside cells, CALHM1 (calcium-homeostasis-modulator-1) may also contribute to ATP-mediated intercellular communication in the brain and elsewhere.
-end-
Additional authors include Akiyuki Taruno, Valerie Vingtdeux, Makoto Ohmoto, Zhongming Ma, Gennady Dvoryanchikov, Ang Li, Leslie Adrien, Haitian Zhao, Sze Leung, Maria Abernethy, Jeremy Koppel, Peter Davies, Mortimer M. Civan, Nirupa Chaudhari, and Goran Hellekant.

The Monell portions of this work were supported by National Institutes of Health grants DC10393, R03DC011143 and Core Grant P30DC011735.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. For 45 years, Monell has advanced scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Monell Chemical Senses Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.