Human brain treats prosthetic devices as part of the body

March 06, 2013

The human brain can learn to treat relevant prosthetics as a substitute for a non-working body part, according to research published March 6 in the open access journal PLOS ONE by Mariella Pazzaglia and colleagues from Sapienza University and IRCCS Fondazione Santa Lucia of Rome in Italy, supported by the International Foundation for Research in Paraplegie.

The researchers found that wheelchair-bound study participants with spinal cord injuries perceived their body's edges as being plastic and flexible to include the wheelchair, independent of time since their injury or experience with using a wheelchair. Patients with lower spinal cord injuries who retained upper body movement showed a stronger association of the wheelchair with their body than those who had spinal cord impairments in the entire body.

According to the authors, this suggests that rather than being thought of only as an extension of the immobile limbs, the wheelchairs had become tangible, functional substitutes for the affected body part. As Pazzaglia explains, "The corporeal awareness of the tool emerges not merely as an extension of the body but as a substitute for, and part of, the functional self."

Previous studies have shown that people with prosthetic devices that extend or restore movement may make such tools part of their physical identity, but whether this integration was due to prolonged use or a result of altered sensory input was unclear. Based on the results of this study, the authors suggest that it may be the latter, as the brain appears to continuously update bodily signals to incorporate these tools into a sense of the body. The study concludes that this ability may have applications in rehabilitation of physically impaired people.
-end-
Citation: Pazzaglia M, Galli G, Scivoletto G, Molinari M (2013) A Functionally Relevant Tool for the Body following Spinal Cord Injury. PLOS ONE 8(3): e58312.doi:10.1371/journal.pone.0058312

Financial Disclosure: Funded by the International Foundation for Research in Paraplegie (IRP, P133) and EU Information and Communication Technologies Grant (VERE project, FP7-ICT-2009-5, Prot. Num. 257695. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interest Statement: The authors have declared that no competing interests exist.

PLEASE LINK TO THE SCIENTIFIC ARTICLE IN ONLINE VERSIONS OF YOUR REPORT (URL goes live after the embargo ends).

PLOS

Related Human Brain Articles from Brightsurf:

Does the human brain resemble the Universe?
An astrophysicist of the University of Bologna and a neurosurgeon of the University of Verona compared the network of neuronal cells in the human brain with the cosmic network of galaxies... and surprising similarities emerged

New multiscale view of the human brain
Researchers from University of Barcelona study how multilayers that form the human brain interact at different resolutions

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Researchers explore how the human brain is so resilient
Future technology may be able to monitor and modify the brain to produce enhanced team performance, while increasing the efficiency and accuracy of decisions.

Nanoelectronics learn the same way as the human brain
Activities in the field of artificial intelligence, like teaching robots to walk, demand ever more powerful, yet at the same time more economical computer chips.

New genomic atlas of the developing human brain
Researchers at Gladstone Institutes and UC San Francisco (UCSF) Weill Institute for Neurosciences have created a comprehensive region-specific atlas of the regulatory regions of the genome linked to human embryonic brain development.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

New method provides unique insight into the development of the human brain
Stem cell researchers at Lund University in Sweden have developed a new research model of the early embryonic brain.

One step closer to understanding the human brain
An international team of scientists led by researchers at Karolinska Institutet in Sweden has launched a comprehensive overview of all proteins expressed in the brain, published today in the journal Science.

Read More: Human Brain News and Human Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.