Ketchup turns somersaults

March 06, 2013

The unusual behavior of complex fluids is part of our daily life: cake dough climbs up the stirring bar, ketchup becomes liquid when you shake it. Also technology uses such phenomena: if we add a small amount of long-chained polymer molecules, a pipeline can transport more oil. The polymers reduce the flow resistance. But up to now the origin of these effects was unclear. The engineers had to rely on estimates and lengthy trials.

A team of physicists led by Professor Andreas Bausch, Chair of Cellular Biophysics at TUM now developed a numerical model of such liquids. Experimental heart of the work are a fine flow channel and a micro-camera. Like the camera looking down at the pit lane of Formula 1 races, the scientists monitored the movements of individual polymer molecules in the flow.

From their observations they conducted a theoretical model for the motion of rigid molecules different from the current. In addition, they were able also to provide for colleagues suspected of movement patterns experimental confirmation.

Challenging for theory and experiment

"Due to the incredibly large number of degrees of freedom the study and description of the motion of polymers is a big challenge," says Markus Harasim, one of the two main authors. Even a simple system of water and polymer shows the effects of complex fluids. In order to make the long molecules visible, the physicists marked the polymers with a fluorescent dye. This allowed them to study the movements under various conditions.

To their surprise the mathematical modeling showed, that even the simple model of a stiff rod was suitable as a starting point. Then the researchers refined the model by taking into account the thermal motion, the flexibility of the molecule and the higher flow resistance of a curved polymer. "Since we now know the microscopic mechanisms, we can extend the model to more complex geometries and flows. And thanks to our experimental set-up we should be able to verify our theories," says co-author Bernhard Wunderlich, who is a well known rapper in the hip-hop band "Blumentopf" in his off time.
-end-
The work was funded by the German Research Foundation Center's research and the Cluster of Excellence Nanosystems Initiative Munich (NIM).

Publication:Direct Observation of the Dynamics of Semiflexible Polymers in Shear Flow
Markus Harasim, Bernhard Wunderlich, Orit Peleg, Martin Kröger, and Andreas Bausch,
Physical Review Letters, online, 4. März 2013 DOI: 10.1103/PhysRevLett.110.108302

Link: http://link.aps.org/doi/10.1103/PhysRevLett.110.108302

Technical University of Munich (TUM)

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.