Startup using U of M tech to manufacture key industrial chemicals from renewable sources

March 06, 2013

MINNEAPOLIS / ST. PAUL (03/06/2013) --Startup Ascenix BioTechnologies will perfect and commercialize production methods to synthesize chemicals from renewable feedstocks. These chemicals, which are used to manufacture everyday items, are typically made from petroleum and often use harmful add-ins like hydrogen cyanide. The startup predicts this new bio-based process, developed by University of Minnesota researchers, will be more economical and environmentally friendly.

The core technology is poised to revolutionize production of certain chemicals, as it would require little modification to existing downstream manufacturing processes to enact. Invented by Kechun Zhang, a chemical engineering professor in the U's College of Science and Engineering, the process yields chemicals comparable in performance to those created using petroleum-based materials.

"This technology is especially attractive because Dr. Zhang has done a tremendous amount of development in the lab," says Ascenix co-founder William Faulkner. "It's advanced to the point where we're already preparing for scale-up of the technology."

Although the process could be applied to the production of biofuels and myriad chemicals, the startup's initial focus is on methylmethacrylate (MMA), a chemical used to make acrylic glass, paints and coatings, automotive parts, and electronics. Global production of the chemical is more than 6 billion pounds per year.

"We take renewable feedstock as an input, ferment it, chemically modify it, and the output is the same chemical produced through a petrochemical process," says Faulkner. "If you were at a hockey arena and looked at a piece of glass made from petroleum, and compared it to one made through our process, it would appear the same. Plus, we're able to do it much more economically than the incumbent petroleum processes."

Because the process uses renewable feedstocks -- sugars derived from corn, sugarcane, cellulosic materials, etc. -- manufacturing is more environmentally friendly and the industry would no longer be subjected to the more significant price fluctuations of petroleum (as compared to the relative fluctuations of sugar inputs). Additionally, the new process bypasses the need for hazardous chemicals, like hydrogen cyanide.

"There are two problems with synthesizing MMA from petroleum: Manufacturers in the U.S. need hydrogen cyanide, which is difficult to purchase and can be dangerous to handle. This new process cuts out the cyanide completely," says Zhang. "The other issue is feedstock reliability - the petroleum byproducts the incumbent processes uses as feedstock can also be more difficult to source, depending on the macro dynamics in the petroleum industry."
-end-
Zhang's research was funded by the U of M Department of Chemical Engineering. The technology was co-invented by Mingyong Xiong. The technology behind Ascenix was exclusively licensed to the St. Paul, Minn.-based startup by the university's Office for Technology Commercialization.

The mission of the University of Minnesota's Office for Technology Commercialization is to translate University research into new products and services that provide growth opportunities for its licensees, benefit the public good, improve the quality of life and generate revenue to support the University's research and education goals.

University of Minnesota

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.