Nav: Home

A kidney disease's genetic clues are uncovered

March 06, 2017

NEW YORK, NY (March 6, 2017)--Researchers have uncovered new genetic clues to understanding IgA nephropathy (IgAN), or Berger's disease, an autoimmune kidney disease and a common cause of kidney failure. The findings are relevant to IgAN as well as other diseases with similar underlying molecular defects, such as inflammatory bowel disease and certain types of blood disease and cancer.

"Very little is known about the causes of IgAN, genetic or otherwise, so our discovery represents an important step toward developing better therapies for this disease," said lead author Krzysztof Kiryluk, MD, the Herbert Irving assistant professor of medicine at Columba University Medical Center (CUMC).

The study, conducted by researchers at CUMC and the University of Alabama at Birmingham (UAB) School of Medicine, was published last month in PLOS Genetics.

IgAN occurs when an antibody called immunoglobulin A (IgA) collects in the kidneys, causing inflammation of the glomeruli, the kidneys' filtering structures. Over time, the inflammation can hinder the kidneys' ability to filter waste from the blood. About half of patients with IgAN have progressive disease and eventually develop kidney failure. There is no cure for IgAN, but medications, along with blood pressure control, can slow disease progression.

The key molecular defect in people with IgAN is abnormal O-glycosylation of IgA antibodies. O-glycosylation--in which a sugar molecule attaches to an oxygen atom in the amino acid residue of a protein--plays a role in various physiologic processes. Studies of families have shown that problems in the O-glycosylation of IgA are common in people with IgAN and are largely genetic in origin, although the exact genes involved were unknown.

To identify genes linked to O-glycosylation problems in IgAN, Dr. Kiryluk and colleagues performed genome-wide association study (GWAS) of 2,633 people of European and East Asian ancestry, populations with high rates of the disease. All of the participants were analyzed for blood levels of galactose-deficient IgA1 (Gd-IgA1), a marker for IgAN, using a new high-throughput blood test developed by lead investigator of the study Jan Novak, PhD, associate professor of microbiology at UAB. A GWAS study of this kind had never been done before, because there was no way to efficiently measure the biomarker in such a large volume of patients.

The researchers found that variations in two genes, C1GALT1 and C1GALT1C1, were significantly more common in people with high levels of the Gd-IgA1 marker. "The genes are found on different chromosomes, but they make proteins that interact to form an enzyme critical for the proper glycosylation of IgA molecules," said Dr. Kiryluk.

To confirm that C1GALT1 and C1GALT1C1 are involved in O-glycosylation, the researchers knocked down the two genes in cells in from IgAN patients and controls. Knocking down the genes increased production of the Gd-IgA1 marker in cells from both groups.

Variations in both genes, combined, accounted for about 7 percent of the overall variability in blood levels of Gd-IgA1 in the study population. "Since approximately 50 percent of variability in Gd-IgA1 levels is due to genetic factors, this means that about 43 percent of the genetic variability is still unexplained," said Dr. Kiryluk. "We started with a relatively small study population, so explaining 7 percent of variability between individuals with the disease was a good start. As we analyze more patients, we expect that we will find more genetic variants and can begin to piece together how these variants interact with environmental factors to cause disease." A GWAS study of some 10,000 patients is now underway.
-end-
The paper is titled, "GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway." The other contributors are Yifu Li (CUMC), Zina Moldoveanu (UAB), Hitoshi Suzuki (UAB), Colin Reily UAB), Ping Hou (Peking University Institute of Nephrology, Beijing, China), Jingyuan Xie (Shanghai Jiao Tong University School of Medicine, Shanghai, China), Nikol Mladkova (CUMC), Sindhuri Prakash (CUMC), Clara Fischman (CUMC), Samantha Shapiro (CUMC), Robert A. LeDesma (CUMC), Drew Bradbury (CUMC), Iuliana Ionita-Laza (CUMC), Frank Eitner (RWTH University of Aachen, Aachen, Germany), Thomas Rauen (RWTH University of Aachen), Nicolas Maillard (University North Hospital, Saint Etienne, France), Francois Berthoux (University North Hospital), Jürgen Floege (RWTH University of Aachen), Nan Chen (Shanghai Jiao Tong University School of Medicine), Hong Zhang (Peking University Institute of Nephrology, Francesco Scolari (University of Brescia, Brescia, Italy), Robert J. Wyatt (University of Tennessee Health Sciences Center, Memphis, TN), Bruce A. Julian (UAB), and Ali G. Gharavi (CUMC).

The study was supported by grants from the National Institute for Diabetes and Digestive Kidney Diseases (K23DK090207, R03DK099564, R01DK105124, K01DK106341, R01DK078244, and R01DK082753), and the Center for Glomerular Diseases at CUMC.

The authors have declared no conflicts of interest

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. The campus that Columbia University Medical Center shares with its hospital partner, NewYork-Presbyterian, is now called the Columbia University Irving Medical Center. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Columbia University Medical Center

Related Kidney Failure Articles:

Novel treatment offers kidney failure patients with rare disorder new hope
A novel treatment offers kidney failure and kidney transplant patients with a rare disorder new hope.
Study quantifies kidney failure risk in living kidney donors
Researchers have developed a risk calculator that estimates the risk of kidney failure after donation.
Potential new treatment for kidney failure in cancer patients
Kidney dysfunction is a frequent complication affecting more than 50 percent of all cancer patients, and is directly linked to poor survival.
Testing urine for particular proteins could be key to preventing kidney transplant failure
Testing for molecular markers in the urine of kidney transplant patients could reveal whether the transplant is failing and why, according to research presented at the 27th European Congress of Clinical Microbiology and Infectious Diseases.
HIV+ kidney failure patients face hurdles in receiving necessary transplants
From 2001 to 2012, HIV+ kidney failure patients on the transplant waiting list were 28 percent less likely to receive a transplant compared with their HIV- counterparts.
More Kidney Failure News and Kidney Failure Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...