Nav: Home

Breakthrough in live coral imaging

March 06, 2017

Corals are calcifying animals and are the prime architects of the most diverse marine ecosystem, the coral reefs. The coral animal harbors tiny microalgae as symbionts in its tissue, where they fix CO2 via photosynthesis and provide the animal host with organic carbon for its respiration. In turn, the microalgae obtain shelter and nutrients in the coral tissue, which extends over a complex calcium carbonate skeleton deposited by the animal host.

The coral host takes several measures to optimize light harvesting of its symbionts, while avoiding excess light exposure. This includes tissue contraction and relaxation as well as synthesis of coral host pigments, including brightly fluorescent protein complexes similar to the well-known green fluorescent proteins that are widely used as cell markers in the life sciences.

Direct observation of living corals is not easy and has relied on bright field imaging and epifluorescence microscopy with limited depth and areal resolution due to the opaque coral tissue, which is composed of different cell layers, as well as diffuse backscatter from the underlying coral skeleton. The use of visible light for such observations can also influence the corals, e.g. by stimulating photosynthesis or by exposure to potentially harmful UV and blue light.

An international team of scientists headed by professor Michael Kühl at the Department of Biology, University of Copenhagen has now surpassed such limitations in observing the tissue organization of living corals by using optical coherence tomography.

Michael Kühl explains, "OCT is an optical ultrasound-like technology that is e.g. employed by doctors to monitor tissue damage in the eye. It involves the use of non-actinic near-infrared radiation that penetrates deeper into tissue than visible light and can reveal microscopic structures with different reflective properties. We used an OCT system that enabled rapid 3D scanning of a 1-2 cm2 area down to a tissue/skeleton depth of 1-3 mm at a spatial resolution of a few μm. This enabled fascinating insights to the internal and external tissue-organization over the skeleton of living corals."

It was possible to identify different tissue layers and quantify their plasticity upon changes in light exposure on living corals. Corals rapidly contracted their tissue under high light stress, making it more reflective thereby protecting their symbionts against excess light. OCT also enabled the quantification of fluorescent host pigments organized in granules that also made the tissue more reflective especially after contraction.

In the dark, corals expand their tissues to gain better access to oxygen, and OCT showed that the tissue surface area of corals can be doubled at nighttime. The surface area of corals exposed to seawater and incident light is thus very dynamic, and OCT can now quantify such changes. This can have important implications for the measurements of coral metabolic rates, which typically are normalized to the surface area of the coral skeleton after the tissue has been removed - assuming that such area measurements are representative of the coral tissue surface area. The OCT results indicate that this assumption needs revision.

It was also possible to monitor the production of coral mucus on the tissue surface, which is an important component of coral life as mucus harbors beneficial microorganisms and also traps particles for feeding or self-cleaning purposes. Enhanced mucus production is also a signature of stressed corals, e.g. upon onset of coral bleaching. Furthermore, corals can expand special defensive tissue structures such as mesenterial filaments upon mechanical stress, and OCT could also visualize such dynamic responses.

Michael Kühl summarizes: "OCT is a powerful technique for studying the dynamic structure of living corals and their behavioral response to environmental stress. It now enables many novel applications in coral science as well as in other areas of marine biology. Our study also illustrates the importance of interdisciplinary approaches in science. Who would have thought that a technique used in the eye clinic would be useful for coral research?"

Faculty of Science - University of Copenhagen

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...