Nav: Home

Boosting your own defenses against heart disease

March 06, 2017

A protein found in the heart that is known to be involved in cellular stress responses in cancer cells is now believed to play a critical role in the ability of cardiac cells to combat heart disease and recover from a heart attack. A new study led by San Diego State University molecular cardiologist Christopher Glembotski, director of the SDSU Heart Institute, found that the protein appears to promote the natural ability of heart cells to ward off stress-induced damage. This finding suggests a novel treatment and prevention strategy for people at risk of heart disease, according to Glembotski's research.

The protein, known as ATF6, occurs naturally in all cells in the human body. Research by Glembotski's group and others over the years has shown that ATF6 responds to stress brought on by misfolded proteins in a part of the cell called the endoplasmic reticulum. This stress is often caused by an overabundance of reactive oxygen molecules that derail the cell's normal ability to function--the primary reason for damage to the heart when people suffer from heart disease and heart attacks. In previous studies, Glembotski and his colleagues showed that during heart attacks in mice, ATF6 is called into action, but its function in the heart was not known.

To investigate this mystery, Glembotski and his colleagues turned to a strain of mice that lack the gene that codes for the production of ATF6. In these mice, they found that heart disease caused more extensive damage than mice with normally functioning versions of the gene.

Looking further into what other effects the ATF6 protein had in cells, the researchers discovered that it activated a cascade of stress-response genes not previously known to be associated with ATF6. These genes produced an enzyme known as catalase, which acts as an antioxidant and neutralizes harmful reactive oxygen molecules, reducing cellular stress and preventing proteins from misfolding in the first place. By artificially introducing catalase into mice that lacked the ATF6 gene, Glembotski and his team found that these treated mice showed the same protective effects as mice with a working version of the ATF6 gene.

The team went on to show that as mice age, they progressively lose ATF6, and their hearts become more prone to damage during a heart attack. In an effort to arrest this age-related effect, Glembotski and his team developed a drug based on gene therapy that could boost ATF6 production in heart cells. It worked, and the older mice who received the drug showed less damage following a heart attack.

"These cellular mechanics should work very much the same way in humans," Glembotski said. Taken together, the results suggest that ATF6 plays a critical role in jumpstarting a process that reduces ischemia/reperfusion damage (I/R). I/R occurs when blood rushes back into tissue after a heart attack. The researchers reported their findings in the March 3 edition of the journal Circulation Research.

"It seems to be an adaptive response of the heart that is lost with age," Glembotski said. "We think that, like the mice, human heart cells usually make some ATF6, but if they could make more--like in the young heart--the heart would be more resistant to heart disease."

To that end, he and his lab--which has been funded continuously by the National Institutes of Health since 1983--are looking at various ways to boost ATF6 production in the heart. One simple way to do so may be increased exercising.

"Our preliminary studies show that exercise might naturally boost endogenous ATF6 and help prevent damage from I/R," Glembotski said.

An additional way of increasing ATF6 in the heart might involve using a gene therapy to boost naturally occurring ATF6. This could be especially effective for older people whose natural protection against cellular stress has waned.

"As we age, the adaptive stress response in the heart decreases," Glembotski said. "If we can deliver new versions of these genes to the heart, we could bring back some of that protection that you naturally have when you are young."
-end-


San Diego State University

Related Heart Disease Articles:

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.
Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.
New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.
Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.
Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.
Women once considered low risk for heart disease show evidence of previous heart attack scars
Women who complain about chest pain often are reassured by their doctors that there is no reason to worry because their angiograms show that the women don't have blockages in the major heart arteries, a primary cause of heart attacks in men.
Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
More Heart Disease News and Heart Disease Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab