Nav: Home

Cerebrospinal fluid shows promise as autism biomarker

March 06, 2017

Researchers from the UC Davis MIND Institute, University of North Carolina (UNC) and other institutions have found that altered distribution of cerebrospinal fluid (CSF) in high-risk infants can predict whether they will develop autism spectrum disorder (ASD). The study appears March 6 in the journal Biological Psychiatry.

"Normally, autism is diagnosed when the child is two or three years old and beginning to show behavioral symptoms; there are currently no early biological markers" said David Amaral, director of research at the MIND Institute and a co-senior author on the paper. "That there's an alteration in the distribution of cerebrospinal fluid that we can see on MRIs as early as six months, is a major finding."

Produced by the brain, CSF was once cast as a neural shock absorber, keeping the brain from bumping up against the skull. More recent findings have shown that CSF can influence neuronal migration and other mechanisms associated with brain development, as well as removing dangerous molecules.

"CSF is like the filtration system in the brain," said Mark Shen, a former graduate student in the Amaral lab and now a postdoctoral fellow in Joseph Piven's lab at UNC. Piven is co-senior author on the paper, and Shen is first author. "As CSF circulates through the brain, it washes away waste particles that would otherwise build up. We believe that extra-axial CSF is an early sign that CSF is not filtering and draining when it should. The result is that there could be a buildup of neuro-inflammation that isn't being washed way."

This study confirms earlier research carried out at the MIND Institute that showed infants with increased CSF in the subarachnoid space (near the brain's perimeter) have increased risk of developing autism. The current study sought to validate the previous results in a larger sample of infants in the Infant Brain Imaging Study (IBIS), a national research network of institutions led by Piven at UNC, Washington University, Children's Hospital of Philadelphia and University of Washington.

To test whether CSF might indicate increased risk of developing ASD, the researchers examined MRIs from 343 infants at six, 12 and 24 months. In this group, 221 babies had older siblings with ASD and were therefore at higher risk for autism. The other 122 subjects had no family history.

Infants who later developed ASD had significantly more subarachnoid CSF at six months than those who did not develop the condition. Among high-risk infants, those who were ultimately diagnosed with ASD had 18 percent more. These measurements predicted ASD in the high-risk group with roughly 70 percent accuracy.

"The more extra-axial CSF present at six months, the more severe the autism symptoms when the kids were diagnosed at 24 months of age," noted Shen.

Finding biomarkers for autism, or any disorder, can be tricky. Quite often, early successes are never replicated. That this larger, more robust, follow-up study confirms the earlier finding is a significant step forward, the researchers said.

Still, this is early work and there are many unanswered questions. The researchers do not know whether the CSF accumulation contributes to autism or is simply an effect from another, more subtle, cause.

In addition, the biomarker is not sensitive enough to say with certainty that a child will develop ASD. However, the apparent link between increased CSF and autism could have significant clinical impact.

"Prior to our 2013 study, radiologists would often call this 'benign extra-axial fluid,' meaning it had no clinical significance," Amaral said. "This finding may alert radiologists and neurologists to the possible negative consequences of increased subarachnoid CSF."

Ultimately, with more study, CSF could help gauge a child's risk of developing ASD and possibly other neurological disorders.

"Neuroimaging CSF could be another tool to help pediatricians diagnose autism as early as possible," said Shen. "It could help signal risk using regular MRIs that you find in any hospital because it is easily seen with the naked eye on a standard MRI."
-end-
Other researchers included Sun Hyung Kim, Hongbin Gu, Heather C. Hazlett, Robert W. Emerson, Meghan R. Swanson and Martin A. Styner at the University of North Carolina; Christine W. Nordahl at UC Davis; Robert C. McKinstry and Kelly N. Botteron at Washington University; Dennis Shaw, Stephen R. Dager and Annette M. Estes at the University of Washington; Jed T. Elison at the University of Minnesota; Vladimir S. Fonov and Alan C. Evans at McGill University; Guido Gerig at NYU; Sarah Paterson at Temple University; Robert T. Schultz at the University of Pennsylvania; and Lonnie Zwaigenbaum at the University of Alberta.

This study was funded by the National Institutes of Health (R01-HD055741, R01- HD05571-S1, R01-HD059854, T32-HD040127 and U54HD086984), Autism Speaks and the Simons Foundation.

University of California - Davis Health System

Related Autism Articles:

Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
A blood test for autism
An algorithm based on levels of metabolites found in a blood sample can accurately predict whether a child is on the autism spectrum of disorder (ASD), based upon a recent study.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
Autism Speaks MSSNG study expands understanding of autism's complex genetics
A new study from Autism Speaks' MSSNG program expands understanding of autism's complex causes and may hold clues for the future development of targeted treatments.
Paths to Autism: One or Many?
A new report in Biological Psychiatry reports that brain alterations in infants at risk for autism may be widespread and affect multiple systems, in contrast to the widely held assumption of impairment specifically in social brain networks.
Raising a child with autism
Humans are resilient, even facing the toughest of life's challenges.
Explaining autism
Recognizing a need to better understand the biology that produces Autism Spectrum Disorder (ASD) symptoms, scientists at Duke-NUS Medical School (Duke-NUS) and the National Neuroscience Institute (NNI), Singapore, have teamed up and identified a novel mechanism that potentially links abnormal brain development to the cause of ASDs.
Autism breakthrough
Using a visual test that is known to prompt different reactions in autistic and normal brains, Harvard researchers have shown that those differences were associated with a breakdown in the signaling pathway used by GABA, one of the brain's chief inhibitory neurotransmitters.
New options for treating autism
The release of oxytocin leads to an increase in the production of anandamide, which causes mice to display a preference for interacting socially.
The Autism Science Foundation launches the Autism Sisters Project
The Autism Science Foundation, a not-for-profit organization dedicated to supporting and funding autism research, today announced the launch of the Autism Sisters Project, a new initiative that will give unaffected sisters of individuals with autism the opportunity to take an active role in accelerating research into the 'Female Protective Effect.'

Related Autism Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.