Nav: Home

Bubble-recoil could be used to cool microchips, even in space

March 06, 2017

The bubbles that form on a heated surface create a tiny recoil when they leave it, like the kick from a gun firing blanks. Now researchers at the University of Illinois at Chicago, under funding from NASA, have shown how this miniscule force can be harnessed to mix liquid coolant around high-power microelectronics -- in space or on Earth.

The vapor-recoil force "is not well-studied, and has never been applied, to my knowledge," says Alexander Yarin, UIC Distinguished Professor of Mechanical Engineering and senior author on the study, published in the journal Nature Microgravity.

"In flights to Mars or the moon, equipment like computers generate a lot of heat," Yarin said. As the computers and chips become smaller and are packed tighter, the production of heat becomes a restriction on computing power.

Engineers have looked to "pool-boiling," which is liquid-cooling at a temperature near the boiling point of the fluid. In boiling, all heat is absorbed in converting the liquid to vapor, with no further rise in temperature until the phase change is complete.

But the lack of gravity in space poses a special problem for pool-boiling: The bubbles have no buoyancy.

"On Earth, the bubbles rise, and cold coolant comes in," Yarin said. "But in space, the bubbles don't rise. They stay on the submerged surface, and can merge together to form an insulating vapor layer, and the heat-removal process is interrupted.

"You can try mechanical mixing, but a motor also creates heat. You can try a strong electric field, but that also produces heat and creates other problems," he said. Both methods take up space and require power.

Yarin and his coworkers sandwiched two heat-generating circuit chips back-to-back. By alternating the voltage to the two chips, they were able to cause the apparatus to swing back and forth through the coolant at about 1 centimeter per second.

"When one chip operates, it produces bubbles and a recoil force. Then the other, and it pushes back -- enough to swing the chips in the cooling fluid and shed the bubbles," Yarin said.

"It works with or without gravity - in space, exactly as on Earth."

The researchers also showed that the force is greater when the bubbles are smaller and more numerous, resulting in a swing of greater arc and velocity. Nanofibers made of polymer were supersonically blown onto the chips, creating a nanotexture for increased bubble nucleation.

"Each single bubble works like jet propulsion," said Sumit Sinha-Ray, Yarin's doctoral student and study co-author. "When a bubble leaves a submerged surface, it pushes the surface back. You don't see it, because the bubbles are tiny and the surface is big. But we organized the bubbles to get the chip swinging."
-end-
Other authors on the study, all current or former students in Yarin's UIC laboratory, are Suman Sinha-Ray, adjunct professor of mechanical and industrial engineering; Wenshuo Zhang; Rakesh Sahu; and undergraduate student Barak Stoltz, who is currently spending a year at SpaceX on an internship.

The research was funded by NASA grant NNX13AQ77G.

University of Illinois at Chicago

Related Bubbles Articles:

Double bubbles pierce with less trouble
Two microscopic bubbles penetrate soft materials better than one, concludes a new study by engineers at UC Riverside.
Novel tin 'bubbles' spur advances in the development of integrated chips
The use of extreme ultraviolet light sources in making advanced integrated chips has been considered, but their development has been hindered owing to a paucity of efficient laser targets.
Bubbles go with the flow
Scientists at The University of Tokyo developed a new computer simulation model that includes microbubble nucleation to explain the flow slippage of fluids inside pipes.
Physics of giant bubbles bursts secret of fluid mechanics
A study inspired by street performers making gigantic soap bubbles led to a discovery in fluid mechanics: Mixing different molecular sizes of polymers within a solution increases the ability of a thin film to stretch without breaking.
Cosmic bubbles reveal the first stars
Astronomers using the Mayall telescope at Kitt Peak National Observatory, a program of NSF's National Optical-Infrared Astronomy Research Laboratory, have identified several overlapping bubbles of hydrogen gas ionized by the stars in early galaxies, a mere 680 million years after the Big Bang.
Nightside barrier gently brakes 'bursty' plasma bubbles
Rice space plasma physicists develop algorithms to measure the buoyancy waves that appear in thin filaments of magnetic flux on Earth's nightside.
When bubbles bounce back
Ultrapure solvents prove there is more than meets the eye when oil and water mix.
Tiny bubbles in our body could fight cancer better than chemo
Healthy cells in our body release nano-sized bubbles that transfer genetic material such as DNA and RNA to other cells.
'Tiny fat bubbles' can boost immunity, calm disease
People living with inflammatory autoimmune disease could benefit from an 'immune system reboot', and researchers have isolated specific cells to target.
Optimizing structures within complex arrangements of bubbles
New research published in EPJ E explores how different numbers of 2D bubbles of two different areas can be arranged within circular discs, in ways which minimize their perimeters.
More Bubbles News and Bubbles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.