Nav: Home

Study IDs 90 genes in fat that may contribute to dangerous diseases

March 06, 2017

A sweeping international effort is connecting the dots between genes in our fat cells and our risk for obesity and cardiometabolic diseases such as heart disease and type 2 diabetes. The researchers have identified approximately 90 genes found in fat that could play important roles in such diseases - and could be targeted to develop new treatments or cures.

Unlike many genetics studies, the huge project looked at how genes' activity actually manifests in human patients - in this case, 770 Finnish men. The results will help doctors and scientists better understand how normal gene variations can affect individuals' health and risk for disease.

"There are a lot of regions in our genomes that are associated with increased risk for, let's say, type 2 diabetes. But we don't always understand what's happening in these regions," said Mete Civelek, PhD, of the University of Virginia School of Medicine. "This study actually addresses some of those questions."

Gene Effects on Health

The men used in the study have had their health histories, body composition, blood work and other wellness factors recorded in astoundingly complete detail - Civelek called them "one of the very few extremely well characterized populations in the world." The precise documentation allowed the researchers to draw conclusions about the effects of gene variations that naturally occur in subcutaneous fat. "Type 2 diabetes, coronary artery disease and obesity are multifactorial and complex diseases," Civelek said. "Genetic factors do not work in isolation - they work in a holistic way, so I think that these kind of studies that we are publishing are key to understanding what's happening in human populations."

That understanding could translate into better treatments for cardiometabolic diseases that pose a tremendous public health threat. Heart disease, for example, is the No. 1 killer in the United States. "Maybe by looking at these other markers we will be able to predict someone's risk much better, so that, for example, they can modify their diet or lifestyle even before type 2 diabetes develops," Civelek said. "Or let's say type 2 diabetes has already developed. We might be able to target some of these novel genes as a potential cure."

DNA in 3D

The project helps advance a more sophisticated - and three-dimensional - view of our DNA. Typically, people think of DNA as long, neat strands, laid out like a stretched string. But in reality, the strands are clumped together inside cells like spaghetti. Genes that appear far away from each other when viewed linearly actually may be quite close when DNA is balled up inside the cell. That physical proximity affects what they do.

"For a lot of cases, what we found was that these different genomic regions actually affect gene expression in a far-away locus, not necessarily the immediate neighborhood," he said. "That's because the DNA is compacted and there's a three-dimensional structure. [Genes] can actually come together in three-dimensional space and can affect each other."

That can have big implications for understanding what genes are doing. "We're saying that it may be the gene that we thought was causing a phenomenon is not," Civelek said. "There may actually be another gene at work that is a little bit farther away."

Civelek, of UVA's Department of Biomedical Engineering, is already hard at work on a follow-up to the project, examining a potential "master switch" that may be regulating the activity of many different genes associated with obesity, HDL (or "good") cholesterol level and risk for type 2 diabetes.

Findings Published

The effort included researchers from UVA; the University of North Carolina at Chapel Hill; the University of California, Los Angeles; Bristol-Myers Squibb; the University of Eastern Finland; the University of Michigan, Ann Arbor; the National Institutes of Health's National Human Genome Research Institute; and King's College London. Their findings have been published in the American Journal of Human Genetics.
The work received financial support from the National Institutes of Health, the Academy of Finland, the Finnish Heart Foundation, the Finnish Diabetes Foundation, the Finnish Funding Agency for Technology and Innovation, and the Commission of the European Community. Bristol-Myers Squibb also contributed.

University of Virginia Health System

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...