Nav: Home

Tree growth model assists breeding for more wood

March 06, 2017

PULLMAN, Wash. - A meeting in a forest between a biologist and a mathematician could lead to thicker, faster growing trees.

"Mathematicians like translating biological processes into numbers," said Andrei Smertenko, assistant professor in Washington State University's Institute of Biological Chemistry. "I'm a biologist, and I want to help grow stronger, better trees."

Breeding trees is a time-consuming and imprecise field, with breeders relying on a few genetic markers and what they can see. It takes years before they see the traits they're looking for in a young tree.

To help speed things up, Smertenko and his WSU Department of Mathematics colleagues Vladyslav Oles and Alexander Panchenko have developed a new model that could help make tree breeding much easier.

How hormones, genes impact growth

The group met three years ago at a party in a forest and started talking about trees, Smertenko's interest. That chance meeting eventually led to the model, which was recently published in the journal PLOS One under the title "Modeling hormonal control of cambium proliferation."

"Radial growth, or thickness, is known to be controlled by many hormones," Smertenko said. "But how each hormone contributes to the radial growth remains poorly understood. So the model simulates how interactions between hormones and key genes would impact radial growth."

Calculations require systematic evaluation of millions of different situations in the cells, he said. Basically, the model runs billions of simulations of genetic interactions to predict which trees are likely to make more or less wood as they grow.

Model focuses on cambium

The model focuses on understanding molecular processes in cambium, a type of stem cell that can sense availability of nutrients in soil and photosynthetic activity in shoots. Cambium integrates these signals with plant height to produce the required amount of wood each growth season, Smertenko said.

"Wood is very expensive for a tree to produce, from a resource perspective," he said. "Allocating too many resources to wood production would ultimately limit plant reproduction potential. And we can't currently measure or study cambium in a living plant because it stops working as soon as we do anything to the plant.

"So if we can't observe the tissue directly, then making a mathematical model is the best solution we have so far," he said.

Cambium controls tree growth and, during the active season, it divides quickly. If you look at annual rings of a tree, the light part reflects higher cambium activity, as in spring, and the darker rings are periods of slow growth, as in winter.

Model identifies breeding lines

In a genetically diverse population of trees, breeders can use the information from the model to see which trees are more likely to generate more wood.

"Some breeders may want skinnier trees, or thicker trees," Smertenko said. "From a science point of view, our model can be used to identify different breeding lines with higher or lower wood production."

So far, the model only works on deciduous trees, like oak or poplar, and not on coniferous trees, like pine or fir, because the growth process is better understood in deciduous trees, Smertenko said.
-end-


Washington State University

Related Mathematical Model Articles:

A mathematical model reveals long-distance cell communication mechanism
An interdisciplinary collaborative team at KAIST has identified how a large community can communicate with each other almost simultaneously even with very short distance signaling.
Experimentally validated model for drug discovery gets a stamp of mathematical approval
Insilico Medicine, a biotechnology company developing an end-to-end drug discovery pipeline utilizing next-generation artificial intelligence, is proud to present its paper 'A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models' at the 33rd Conference on Neural Information Processing Systems (NeurIPS).
A new mathematical approach to understanding zeolites
A system developed at MIT helps to identify zeolites that can readily transform into other zeolite forms, which are widely used as catalysts in industrial processes.
Mathematical model could help correct bias in measuring bacterial communities
A mathematical model shows how bias distorts results when measuring bacterial communities through metagenomic sequencing.
Mathematical model provides new support for environmental taxes
A new mathematical model provides support for environmental taxation, such as carbon taxes, as an effective strategy to promote environmentally friendly practices without slowing economic growth.
New mathematical model can improve radiation therapy of brain tumours
Researchers have developed a new model to optimize radiation therapy and significantly increase the number of tumor cells killed during treatment.
AI used to test evolution's oldest mathematical model
Researchers have used artificial intelligence to make new discoveries, and confirm old ones, about one of nature's best-known mimics, opening up whole new directions of research in evolutionary biology.
Mathematical model explores daily rhythms in pain sensitivity
A new computational model successfully predicts how daily pain sensitivity rhythms affect pain processing, both in healthy adults and in people with neuropathic pain.
Mathematical tools to study tumors
The results obtained suggest that vitronectin can change the rigidity of the location of the tumorous cells.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
More Mathematical Model News and Mathematical Model Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab