Nav: Home

Running on renewables: How sure can we be about the future?

March 06, 2018

A variety of models predict the role renewables will play in 2050, but some may be over-optimistic, and should be used with caution, say researchers.

The proportion of UK energy supplied by renewable energies is increasing every year; in 2017 wind, solar, biomass and hydroelectricity produced as much energy as was needed to power the whole of Britain in 1958.

However, how much the proportion will rise by 2050 is an area of great debate. Now, researchers at Imperial College London have urged caution when basing future energy decisions on over-optimistic models that predict that the entire system could be run on renewables by the middle of this century.

Mathematical models are used to provide future estimates by taking into account factors such as the development and adoption of new technologies to predict how much of our energy demand can be met by certain energy mixes in 2050.

These models can then be used to produce 'pathways' that should ensure these targets are met - such as through identifying policies that support certain types of technologies.

However the models are only as good as the data and underlying physics they are based on, and some might not always reflect 'real-world' challenges. For example, some models do not consider power transmission, energy storage, or system operability requirements.

Now, in a paper published today in the journal Joule, Imperial researchers have shown that studies that predict whole systems can run on near-100% renewable power by 2050 may be flawed as they do not sufficiently account for reliability of the supply.

Using data for the UK, the team tested a model for 100% power generation using only wind, water and solar (WWS) power by 2050. They found that the lack of firm and dispatchable 'backup' energy systems - such as nuclear or power plants equipped with carbon capture systems - means the power supply would fail often enough that the system would be deemed inoperable.

The team found that even if they added a small amount of backup nuclear and biomass energy, creating a 77% WWS system, around 9% of the annual UK demand could remain unmet, leading to considerable power outages and economic damage.

Lead author Clara Heuberger, from the Centre for Environmental Policy at Imperial, said: "Mathematical models that neglect operability issues can mislead decision makers and the public, potentially delaying the actual transition to a low carbon economy. Research that proposes 'optimal' pathways for renewables must be upfront about their limitations if policymakers are to make truly informed decisions."

Co-author Dr Niall Mac Dowell, from the Centre for Environmental Policy at Imperial, said: "A speedy transition to a decarbonised energy system is vital if the ambitions of the 2015 Paris Agreement are to be realised.

"However, the focus should be on maximising the rate of decarbonisation, rather than the deployment of a particular technology, or focusing exclusively on renewable power. Nuclear, sustainable bioenergy, low-carbon hydrogen, and carbon capture and storage are vital elements of a portfolio of technologies that can deliver this low carbon future in an economically viable and reliable manner.

"Finally, these system transitions must be socially viable. If a specific scenario relies on a combination of hypothetical and potentially socially challenging adaptation measures, in addition to disruptive technology breakthroughs, this begins to feel like wishful thinking."

Imperial College London

Related Nuclear Articles:

US nuclear regulators greatly underestimate potential for nuclear disaster
The US Nuclear Regulatory Commission relied on faulty analysis to justify its refusal to adopt a critical measure for protecting Americans from nuclear-waste fires at dozens of reactor sites around the country, according to an article in the May 26 issue of Science magazine.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
New path suggested for nuclear fusion
Scientists at Rice University, the University of Illinois at Urbana-Champaign and the University of Chile offer a glimpse into a possible new path toward the production of energy through nuclear fusion.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Researchers model the way into a nuclear future
The main type of nuclear fuel is the uranium oxide pellet composition.
Nuclear CSI: Noninvasive procedure could identify criminal nuclear activity
Determining if an individual has handled nuclear materials is a challenge national defense agencies currently face.
A new method to help solve the problem of nuclear waste
The article, published recently in Open Chemistry may lead to the development of a process to remove uranium from wastewater at the front-end of the nuclear fuel cycle, or even extracting natural uranium from sea water.
Nuclear puzzle may be clue to fifth force
In a new paper, University of California, Riverside theoretical physicist Flip Tanedo and his collaborators have made new progress towards unraveling a mystery in the beryllium nucleus that may be evidence for a fifth force of nature.
New approach to nuclear structure, freely available
The atomic nucleus is highly complex. Understanding this complexity often requires a tremendous amount of computational power.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Nuclear Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.