Nav: Home

For blind gamers, equal access to racing video games

March 06, 2018

The RAD, an audio-based interface that can easily be integrated into existing video games, enables people who are visually impaired to play video games with the same speed and control as sighted players, with full 3D graphics and complex, challenging racetracks

New York, NY--March 6, 2018--Brian A. Smith, a PhD candidate in Computer Science at Columbia Engineering, has developed the RAD--a racing auditory display-- to enable gamers who are visually impaired to play the same types of racing games that sighted players can play with the same speed, control, and excitement that sighted players experience. The audio-based interface, which a player can listen to using a standard pair of headphones, can be integrated by developers into almost any racing video game, making a popular genre of games equally accessible to people who are blind. VIDEO: https://vimeo.com/256104155

"The RAD is the first system to make it possible for people who are blind to play a 'real' 3D racing game--with full 3D graphics, realistic vehicle physics, complex racetracks, and a standard PlayStation 4 controller," says Smith, who worked on the project with Shree Nayar, T.C. Chang Professor of Computer Science. "It's not a dumbed-down version of a racing game tailored specifically to people who are blind."

While there are a number of games on the market suitable for the blind, many are loaded with competing sources of information that players must sift through, slowing down the fun of playing the game. Others are versions of popular games so simplified that a blind gamer does nothing more than follow orders. There has been a fundamental tradeoff between preserving a game's full complexity and its pace when making it blind-accessible.

"Our challenge," says Smith, "was to give visually impaired players enough information about the game so that they could have the same sense of control and thrill that sighted players have, but not so much information that they would get overwhelmed by audio overload or bogged down in just figuring out how to interpret the sounds."

Smith's work builds on two distinct areas of research: building audio navigation systems and developing blind-accessible racing games and driver assistance systems. The RAD comprises two novel sonification techniques: a sound slider for understanding a car's speed and trajectory on a racetrack, and a turn indicator system for alerting players about upcoming turns well in advance of the actual turns. Together, these approaches enable players to understand aspects about the race and perform a wide variety of actions in a way that is not possible in current blind-accessible racing games. Smith's aim was to design an interface that would give players enough relevant information to form a plan of action.

"The RAD's sound slider and turn indicator system work together to help players know the car's current speed; align the car with the track's heading; learn the track's layout; profile the direction, sharpness, timing, and length of upcoming turns; cut corners; choose an early or late apex; position the car for optimal turning paths; and know when to brake to complete a turn," says Smith. He will present his paper at ACM CHI 2018's Conference on Human Factors in Computing Systems April 21-26 in Montreal, the leading international conference for Human-Computer Interaction.

Smith designed the RAD and then built a prototype car racing game in Unity, the most popular game engines in the world, and integrated the RAD into that prototype. He ran two studies with 15 participants he recruited through the Brooklyn-based Helen Keller Services for the Blind and volunteers at Columbia.

The players preferred the RAD's interface over that of Mach 1, a popular blind-accessible racing game. One player commented that at times he felt like he had as much information as if he could actually see the track. Another gamer, Edis Adilovic, had played Top Speed, a blind-friendly racing game before, but the RAD was the first time he played a video game with realistic vehicle physics. He was able to race on a complex racetrack as well as casual sighted players could.

"With the RAD, Edis could not only play our prototype racing game, but do so with the same lap times and driving paths as sighted players," Smith notes.

Adilovic liked the fact that, unlike other blind-friendly racing games, the RAD did not constantly tell him to "do this, do that," and added that, "After the training was done, I had the possibility of doing whatever I wanted to."

Smith is planning his next steps, which include incorporating more racing game elements such as rival vehicles. He also hopes to create similar systems for other genres of games, including adventure games, role-playing games, and first-person shooters. "My hope," he adds, "is that game designers will soon be able to build game systems from a suite of tools that are similarly intuitive and functional to the RAD, and make their video games equally accessible to people who are blind. We think the RAD marks the beginning of a whole new suite of such tools."
-end-
About the Study

The study is titled "The RAD: Making Racing Games Equivalently Accessible to People Who Are Blind."

Authors are: Brian A. Smith (PhD candidate) and Shree Nayar (T.C. Chang Professor of Computer Science), Columbia Engineering.

The study was funded by the National Science Foundation's IGERT program.

The authors declare no financial or other conflicts of interest.

LINKS:

Paper: http://www.cs.columbia.edu/CAVE/projects/rad/

VIDEO: https://www.youtube.com/dfd6aeac-9ac5-4722-9a3c-692f828638b2

http://engineering.columbia.edu/

http://www.cs.columbia.edu/~brian/

http://www.cs.columbia.edu/

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 200 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Columbia University School of Engineering and Applied Science

Related Blind Articles:

Identifying the blind spots of soil biodiversity
Soils harbour a substantial part of the world's biodiversity, yet data on the patterns and processes taking place below ground does not represent all relevant ecosystems and taxa.
Strong convictions can blind us to information that challenges them
When people are highly confident in a decision, they take in information that confirms their decision, but fail to process information which contradicts it, finds a UCL brain imaging study, published in Nature Communications.
A tactile robot finger with no blind spots
Researchers at Columbia Engineering announced today that they have introduced a new type of robotic finger with a sense of touch.
Exposing blind spots in the carbon budget space
The impact of 1°C of global heating is already having devastating impacts on communities and ecosystems across the globe.
Optic nerve stimulation to aid the blind
EPFL scientists are investigating new ways to provide visual signals to the blind by directly stimulating the optic nerve.
Identifying artificial intelligence 'blind spots'
A novel model developed by MIT and Microsoft researchers identifies instances in which autonomous systems have 'learned' from training examples that don't match what's actually happening in the real world.
Seeing and avoiding the 'blind spot' in atomic force measurements
Researchers have discovered a 'blind spot' in atomic force microscopy -- a powerful tool capable of measuring the force between two atoms, imaging the structure of individual cells and the motion of biomolecules.
Giant flightless birds were nocturnal and possibly blind
If you encountered an elephant bird today, it would be hard to miss.
'Blind' Cheetah 3 robot can climb stairs littered with obstacles
MIT's Cheetah 3 robot can now leap and gallop across rough terrain, climb a staircase littered with debris, and quickly recover its balance when suddenly yanked or shoved, all while essentially blind.
Researchers map brain of blind patient who can see motion
Since the visual processing centres of her brain went dark after a stroke, a Scottish woman has been unable to see objects.
More Blind News and Blind Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.