Nav: Home

Salk scientists find power switch for muscles

March 06, 2018

LA JOLLA--(March 6, 2018) If you've ever wondered how strenuous exercise translates into better endurance, researchers at the Salk Institute may have your answer. In a study published in the journal Cell Reports on March 6, 2018, scientists in Ronald Evans' lab have shown that the protein ERRγ (ERR gamma) helps deliver many of the benefits associated with endurance exercise.

"ERRγ helps make endurance exercise possible," says Ronald Evans, who is professor and director of the Gene Expression Laboratory and co-senior author on the paper. "It gears up the energy-creating cellular power plants known as mitochondria, creating more blood vessels to bring in oxygen, take away toxins and help repair damage associated with muscle use. This makes ERRγ a really interesting potential therapeutic target for conditions with weakened muscles."

The story starts with the PGC1α and PGC1β proteins, which stimulate 20 other proteins associated with skeletal muscle energy and endurance exercise, including one from the Evans lab called ERRγ. In turn, ERRγ, a hormone receptor, acts to turn on genes. The Evans lab researchers wanted to precisely understand ERRγ's role in skeletal muscle energy production and how that impacts physical endurance.

To unravel this relationship, the Salk team studied mice without PGC1α/β. In some, they increased ERRγ selectively in skeletal muscle cells. This approach allowed them to measure how ERRγ and PGC1 act independently, as well as how they function in combination.

Losing PGC1 had a negative impact on muscle energy and endurance. However, boosting ERRγ restored function. The team found ERRγ is essential to energy production, activating genes that create more mitochondria. In other words, they found the power switch for skeletal muscles.

The lab also showed that increased ERRγ in PGC1-deficient mice boosted their exercise performance. By measuring voluntary wheel running, they found that increasing ERRγ produced a five-fold increase in time spent exercising compared to mice with no PGC1 and normal ERRγ levels.

"Now that we have detected this direct target (ERRγ) for exercise-induced changes," says Weiwei Fan, a Salk research associate and the paper's first author, "we could potentially activate ERRγ and create the same changes that are being induced by exercise training."

In addition to increasing the number of mitochondria in skeletal muscle cells, ERRγ also increased muscular blood flow.

"You have to get more blood supply in to get more energy and take away toxic metabolites," says Michael Downes, a Salk senior scientist and co-senior author on the paper. "ERRγ boosts vascularization as well as mitochondria."

But perhaps the most important finding is that ERRγ could be a significant therapeutic target in helping to repair damaged muscles.

"Mitochondria play such a central role in cells throughout the body, but particularly in muscle cells, which tend to require more energy," says Evans. "We now know that, by increasing mitochondria energy output, ERRγ can actually rescue damaged muscle. If we can identify small molecules that specifically target ERRγ, we hope to help people with muscular dystrophy and other skeletal muscle conditions."
-end-
Other authors included Nanhai He, Chun Shi Lin, Zong Wei, Nasun Hah, Wanda Waizenegger, Ming-Xiao He, Ruth T. Yu and Annette R. Atkins at Salk and Christopher Liddle at Sydney Medical School.

This study was funded by: the Office of Naval Research (ONR N00014-16-1-3159), National Institutes of Health (DK057978, HL105278, HL088093, ES010337 and CA014195), National Institute of Environmental Health Sciences (P42ES010337), Department of the Navy, Office of Naval Research (N00014-16-1-3159), the National Health and Medical Research Council of Australia (512354 and 632886), The Leona M. and Harry B. Helmsley Charitable Trust (#2017PG-MED001), the Samuel Waxman Cancer Research Foundation, Ipsen/Biomeasure and the Glenn Foundation for Medical Research.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Mitochondria Articles:

Mitochondria-targeted antioxidant SkQ1 helps to treat diabetic wounds
Members of the Faculty of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University, have tested on a mouse model a mitochondria-targeted antioxidant, helping to treat diabetic wounds.
Mitochondria targeting anti-tumor compound
Researchers from Kumamoto University in Japan have found that the compound folic acid-conjugated methyl-BETA-cyclodextrin (FA-M-BETA-CyD) has significant antitumor effects on folate receptor-ALPHA-expressing (FR-ALPHA (+)) cancer cells.
Closing the gate to mitochondria
A team of researchers develops a new method that enables the identification of proteins imported into mitochondria.
Elucidated connection between renal failure and 'bad' mitochondria described
Biologists from the A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University suggested the approach to prevent kidney injury after ischemia.
How exercise -- interval training in particular -- helps your mitochondria stave off old age
Researchers have long suspected that the benefits of exercise extend down to the cellular level, but know relatively little about which exercises help cells rebuild key organelles that deteriorate with aging.
Cell disposal faults could contribute to Parkinson's, study finds
A fault with the natural waste disposal system that helps to keep our brain cell 'batteries' healthy may contribute to neurodegenerative disease, a new study has found.
Sex cells evolved to pass on quality mitochondria
Mammals immortalize their genes through eggs and sperm to ensure future generations inherit good quality mitochondria to power the body's cells, according to new UCL research.
Newly identified pathway in mitochondria fuels tumor progression across cancer types
Scientists at The Wistar Institute have identified a novel protein pathway across several types of cancer that controls how tumor cells acquire the energy necessary for movement, invasion and metastasis.
Collapse of mitochondria-associated membrane in ALS
Mitochondria-associated membrane (MAM) is a contacting site of endoplasmic reticulum and mitochondria, and plays a key role in cellular homeostasis.
New research on the muscles of elite athletes: When quality is better than quantity
A Danish-Swedish research team working on a project led by University of Southern Denmark has discovered that muscle endurance is not only determined by the number of mitochondria, but also their structure.

Related Mitochondria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".