Nav: Home

Good news! Europe's electric grid will still work even as the world crumbles

March 06, 2019

Scientists at Aarhus University in Denmark studying the effects of climate change on weather-dependent electricity systems have found a silver lining in Earth's otherwise fraught future outlook. Temperatures may climb and seas may rise, but the lights (and, undoubtedly, the air conditioning) will still be on in nations with high capacities for wind and solar energy. The research, published March 6 in the journal Joule, suggests that these electricity systems should work almost equally well in both historical and future European climates despite changing weather patterns.

Using data from weather models and climate time series, the team developed models that predict wind turbine and solar panel output for all European countries under the most common global warming scenarios through the year 2100. In order to compare how a European weather-dependent electrical grid functions in these projections with how it functioned historically, the scientists selected five key metrics: need and capacity for dispatchable electricity (which can be stored and used on demand by power grid operators), benefit of electrical transmission, benefit of electrical storage, and variability of electricity production and consumption. These metrics measure the most important aspects of a large-scale renewable-heavy electricity system and are abstract enough that the team could use them to draw general conclusions without focusing on a specific technology mix.

"Most other energy system studies assume a number of technologies and seek to combine them in a cost-optimal way to cover the demand," says Smail Kozarcanin, a PhD fellow in the Department of Engineering and the first author of the study. "In this study, we seek to understand, for example, how climate change affects the system independent of which technologies are used to cover the demand that remains unmet by wind and solar. To the best of our knowledge, this technology-independent focus in combination with high-resolution data on climate change projections is unique to our study."

Despite the new weather extremes predicted by future climate scenarios, the study didn't find a large difference in the key metrics for renewable electrical systems, suggesting that system designs based on historical weather should perform similarly in future climates. Kozarcanin and his colleagues believe this is because current systems are designed to withstand extreme weather events--they simply don't have to withstand them now as often as they will in the future. The team also notes that European demand for electrified heating and cooling will actually dip slightly as the climate warms, since the demand for air conditioning is much less than that for heating at European latitudes. This relaxed demand will counterbalance the slight decrease in wind and solar energy output their models predict.

"Extreme weather might require changes to the renewable generators and other parts of the system," says Kozarcanin. "For example, future wind turbines may require new types of storm protection and solar panels could need protection against super hailstorms. But our study shows that large-scale infrastructure choices, such as back-up power plant capacity, are relatively unaffected by the level of climate change."

However, the team does believe that the European electrical grid will still require some tweaking to operate efficiently in the future. Transmission capacities are well developed within most nations, but the massive interconnected electrical system spanning 24 countries across Central Europe will need a boost to effectively transmit renewable energy between nations.

"The main challenge for future grids will most likely be political and societal will to make the investments and proper planning for a grid topology that provides most of the potential benefit from smoothing renewable energy production between countries," says Kozarcanin.

If humans fail to mitigate the apocalyptic heatwaves and superstorms to come, at least it seems probable that we can hole up in our climate-controlled living rooms and watch HBO Nordic. Indefinitely.
-end-
The authors were funded by the Aarhus University Research Foundation, the China Scholarship Council, the Idella Foundation Denmark, and the RE-INVEST project, which is supported by the Innovation Fund Denmark.

Joule, Kozarcanin et al.: "21st Century Climate Change Impacts on Key Properties of a Large-Scale Renewable-Based Electricity System" http://www.cell.com/joule/fulltext/S2542-4351(19)30050-9

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".