Nav: Home

As sea level rises, wetlands crank up their carbon storage

March 06, 2019

Some wetlands perform better under pressure. A new study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Coastal wetlands, which include marshes, mangroves and seagrasses, already store carbon more efficiently than any other natural ecosystem, including forests. The latest study, published March 7 in the journal Nature, looked at how coastal wetlands worldwide react to rising seas and discovered they can rise to the occasion, offering additional protection against climate change.

"Scientists know a fair amount about the carbon stored in our local tidal wetlands, but we didn't have enough data to see global patterns," said Pat Megonigal, a co-author and soil scientist at the Smithsonian Environmental Research Center.

To get a global picture, scientists from Australia, China, South Africa and the U.S. pooled data from 345 wetland sites on six continents. They looked at how those wetlands stored carbon for up to 6,000 years and compared whether sea levels rose, fell or stayed mostly the same over the millennia.

For wetlands that had faced rising seas, carbon concentrations doubled or nearly quadrupled in just the top 20 centimeters of soil. When the scientists looked deeper, at 50 to 100 centimeters beneath the surface, the difference hit five to nine times higher.

The extra boost comes because the carbon added to wetland soils by plant growth and sediment is buried faster as wetlands become wetter. Trapped underwater with little to no oxygen, the organic detritus does not decompose and release carbon dioxide as quickly. And the higher the waters rise, the more underwater storage space exists for the carbon to get buried.

North America and Europe faced the most sea-level rise over the past 6,000 years. Melting glaciers from the last ice age caused water levels to rise, increasing coastal flooding. Continents in the southern hemisphere, by contrast, were largely glacier-free and experienced stable or even falling sea levels.

However, the scene is changing now. The steady march of climate change is exposing even wetlands farther south to accelerated sea-level rise.

"They may be the sleeping giants of global carbon sequestration," said lead author Kerrylee Rogers of the University of Wollongong in Australia. Half of the world's tidal marshland grows along the coastlines of southern Africa, Australia, China and South America. If those wetlands doubled their carbon sequestration--as other wetlands in the study did in response to sea-level rise--they could sequester another 5 million tons of atmospheric carbon every year. That is the equivalent of taking more than a million cars off the road.

The trick, of course, is to ensure wetlands do not drown and disappear if waters rise too quickly.

"Preservation of coastal wetlands is critical if they are to play a role in sequestering carbon and mitigating climate change," Rogers said.

For coastal wetlands to survive, they need space to migrate inland. Whether they have enough space depends largely on how societies prioritize many competing goals. One thing is certain: With climate change ramping up, wetlands can protect people in more ways than one, if given enough breathing room.
-end-
Researchers from Macquarie University, Australia; Nelson Mandela University, South Africa; Yunnan University, China; and the Australian Nuclear Science and Technology Organisation also contributed to the study. After publication, the abstract will be available at https://www.nature.com/articles/s41586-019-0951-7.

For a full copy of the report, for images or to speak with one of the authors, contact Kristen Minogue at minoguek@si.edu or (443) 482-2325; or Alise Fisher at fishera@si.edu or (202) 633-5194.

Smithsonian

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.