Nav: Home

Migrating snowline plays outsized role in setting pace of Greenland ice melt

March 06, 2019

PROVIDENCE, R.I. [Brown University] -- In a finding that may help scientists better predict sea-level rise in a warming world, Brown University researchers have found an underappreciated factor that controls the rate at which Greenland's ice sheet melts.

The research, published in the journal Science Advances, used satellite imagery to track the movement of the ice sheet's snowline -- the elevation above which the surface is snow-covered, and below which bare ice is exposed. The study showed that snowline elevation varied significantly from year to year, and that its variation exerted an outsized influence on the amount of solar radiation the ice sheet absorbed. Changes in snowline elevation from year to year explained more than half of the annual radiation variability on the ice sheet, the study found.

Ultimately, the amount of radiation the ice sheet absorbs determines the extent to which it melts.

"People who study alpine glaciers have recognized the importance of snowlines for years, but no one had explicitly studied them in Greenland before," said Laurence C. Smith, a visiting fellow at the Institute at Brown for Environment and Society (IBES) and a study co-author. "This study shows for the first time that this simple partitioning between bare ice and snow matters more when it comes to melting than a whole host of other processes that receive more attention."

The results have significant implications for predicting future sea-level rise, the researchers say. Meltwater from Greenland's ice sheet is a large contributor to global sea levels, and this study shows that regional climate models used to predict future runoff often predict snowlines inaccurately.

"We found that models don't reproduce snowlines very well, which adds an uncertainty to future projections," said Jonathan C. Ryan, a postdoctoral researcher at Brown and the study's lead author. "But now that we've shown how important the snowline effect is, and have some direct observations of snowline positions, hopefully we can improve these models going forward."

The reason that the snowline is so important has to do with the difference in reflectivity between snow cover and bare ice. Snow is extremely bright and reflects back into the atmosphere the lion's share of the sunlight it receives. Bare ice is much darker, and therefore reflects less radiation. Instead, more radiation is absorbed, which heats the ice and leads to melting. These processes have been well understood by scientists for years. What wasn't known was the extent to which they play out on the Greenland ice sheet, and to what extent snowline migration might regulate melt from year to year.

Ryan says he first got an inkling of how important snowline movement might be while doing field work on the ice sheet. He and his colleagues were trying to record snowline positions with aerial drones. Each day, they flew their drones inland across the bare ice. When they reached the snowline, they recorded the position, turned their drones around and flew back. At one point during the field season, they had to stop flying for a few days because of high winds. When they got back to flying, they found something surprising.

"Suddenly the snowline was just gone," Ryan said. "In a couple of days it had moved 30 kilometers or so up the ice sheet and was now out of the range of our drones. That was the first moment we thought we should investigate the effects of snowline movement on melt."

For the study, Ryan and his colleagues used images from the MODIS instrument, an imaging spectroradiometer that flies aboard NASA's Terra satellite. They were able to get a time series of snowline positions from 2001 to 2017. They could also measure the reflectivity of both the snow cover and bare ice.

The images confirmed a substantial movement of the snowline from season to season and from year to year -- reaching a maximum elevation in 2012, a record year for ice sheet melt. There was also a substantial difference in reflectivity between the snow and ice. The snow reflected an average of about 79 percent of the radiation that struck it. The ice, meanwhile, reflected only between 45 and 57 percent. The snowline movement combined with the differences in reflectivity mean that snowline position plays a dominant role in controlling the ice sheet's energy absorption. All told, 53 percent of year-to-year radiation variability can be explained by the position of snowline, the researchers found.

That 53 percent figure dwarfs other factors that the researchers investigated. For instance, the researchers thought that processes that make already-dark bare ice darker over time would play a large role in controlling energy absorption. Pooling water, dirt layers and algae growth can all darken bare ice, making it even less reflective. The study found that those factors did make a difference in energy absorption, just not nearly as much as previous research had assumed. It turned out that position of the snowline had a five-fold stronger influence on energy absorption than the darkening of bare ice itself.

"That's a surprise because there's been a lot of work lately on these ice-darkening processes," Smith said. "It turns out that in this case, we were missing the elephant in the room, which is the snowline."

Having established the importance of snowline in energy absorption -- and ultimately in melting and runoff -- the researchers wanted to see if regional climate models properly captured the effect of the snowline. That's important because those models are used to predict future runoff from the Greenland ice sheet.

The researchers found that two leading models both fail to capture snowline elevation accurately. One model, known as MAR, set snowlines too high and was therefore likely overestimating runoff in high-melt years. The other model, known as RACMO, set the snowlines too low, meaning it likely underestimates future runoff in a warmer climate.

Given the importance of snowline position as revealed in this study, the researchers say it's important the models get the snowline right.

"We're collaborating now with the modelers, providing them with our observed snowlines," Ryan said. "That gives them some ground truth they should be able to use to adjust their models. Now there's something to aim for."

The result of those improvements in modeling snowline, the researchers say, would be more accurate forecasts of Greenland's future contributions to sea-level rise.
-end-
The research was funded by the NASA Cryosphere Program (NNX14AH93G). Other co-authors were Dirk van As, Sarah Cooley, Matthew Cooper, Lincoln Pitcher and Alun Hubbard.

Brown University

Related Ice Sheet Articles:

Collapse of the European ice sheet caused chaos
Scientists have reconstructed in detail the collapse of the Eurasian ice sheet at the end of the last ice age.
Oversized landforms discovered beneath the Antarctic ice sheet
A team of scientists led by the Université libre de Bruxelles (ULB, Belgium) and the Bavarian Academy of Sciences (Germany) have now discovered an active hydrological system of water conduits and sediment ridges below the Antarctic ice sheet.
Climate change clues revealed by ice sheet collapse
The rapid decline of ancient ice sheets could help scientists predict the impact of modern-day climate and sea-level change, according to research by the universities of Stirling in Scotland and Tromsø in Norway.
Last remnant of North American ice sheet on track to vanish
The last piece of the ice sheet that once blanketed much of North America is doomed to disappear in the next several centuries, says a new study by researchers at Simon Fraser University in British Columbia and the University of Colorado Boulder.
Mysterious 'crater' on Antarctica indication of vulnerable ice sheet
The East Antarctic ice sheet is more vulnerable than expected, due to a strong wind that brings warm air and blows away the snow.
New study shows impact of Antarctic Ice Sheet on climate change
An international team of researchers has concluded that the Antarctic Ice Sheet actually plays a major role in regional and global climate variability -- a discovery that may also help explain why sea ice in the Southern Hemisphere has been increasing despite the warming of the rest of the Earth.
East Greenland ice sheet has responded to climate change over the last 7.5 million
Using marine sediment cores containing isotopes of aluminum and beryllium, a group of international researchers has discovered that East Greenland experienced deep, ongoing glacial erosion over the past 7.5 million years.
Historic shrinking of Antarctic Ice Sheet linked to CO2 spike
Twenty-three million years ago, the Antarctic Ice Sheet began to shrink, going from an expanse larger than today's to one about half its modern size.
Tracking the amount of sea ice from the Greenland ice sheet
The Greenland ice sheet records information about Arctic climate going back more than 120.000 years.
This week from AGU: Greenland's thawing ice sheet, Nepal's landslides, and more
This week from AGU are papers on Greenland's thawing ice sheet, Nepal's landslides, and four more research spotlights.

Related Ice Sheet Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...