Dimming Betelgeuse likely isn't cold, just dusty, new study shows

March 06, 2020

Late last year, news broke that the star Betelgeuse was fading significantly, ultimately dropping to around 40% of its usual brightness. The activity fueled popular speculation that the red supergiant would soon explode as a massive supernova.

But astronomers have more benign theories to explain the star's dimming behavior. And scientists at the University of Washington and Lowell Observatory believe they have support for one of them: Betelgeuse isn't dimming because it's about to explode -- it's just dusty.

In a paper accepted to Astrophysical Journal Letters and published on the preprint site arXiv, Emily Levesque, a UW associate professor of astronomy, and Philip Massey, an astronomer with Lowell Observatory, report that observations of Betelgeuse taken Feb. 14 at the Flagstaff, Arizona, observatory allowed them to calculate the average surface temperature of the star. They discovered that star is significantly warmer than expected if the recent dimming were caused by a cooling of the star's surface.

The new calculations lend support to the theory that Betelgeuse -- as many red supergiant stars are prone to do -- has likely sloughed off some material from its outer layers.

"We see this all the time in red supergiants, and it's a normal part of their life cycle," said Levesque. "Red supergiants will occasionally shed material from their surfaces, which will condense around the star as dust. As it cools and dissipates, the dust grains will absorb some of the light heading toward us and block our view."

It is still true: Astronomers expect Betelgeuse to explode as a supernova within the next 100,000 years when its core collapses. But the star's dimming, which began in October, wasn't necessarily a sign of an imminent supernova, according to Massey.

One theory was that newly formed dust was absorbing some of Betelgeuse's light. Another posited that huge convection cells within Betelgeuse had drawn hot material up to its surface, where it had cooled before falling back into the interior.

"A simple way to tell between these possibilities is to determine the effective surface temperature of Betelgeuse," said Massey.

Measuring a star's temperature is no straightforward task. Scientists can't just point a thermometer at a star and get a reading. But by looking at the spectrum of light emanating from a star, astronomers can calculate its temperature.

"Emily and I had been in contact about Betelgeuse, and we both agreed that the obvious thing to do was to get a spectrum," said Massey. "I already had observing time scheduled on the 4.3-meter Lowell Discovery Telescope, and I knew if I played around for a bit I would be able to get a good spectrum despite Betelgeuse still being one of the brightest stars in the sky."

The light from bright stars is often too strong for a detailed spectrum, but Massey employed a filter that effectively "dampened" the signal so they could mine the spectrum for a particular signature: the absorbance of light by molecules of titanium oxide.

Titanium oxide can form and accumulate in the upper layers of large, relatively cool stars like Betelgeuse, according to Levesque. It absorbs certain wavelengths of light, leaving telltale "scoops" in the spectrum of red supergiants that scientist can use to determine the star's surface temperature.

By their calculations, Betelgeuse's average surface temperature on Feb. 14 was about 3,325 degrees Celsius, or 6,017 F. That's only 50-100 degrees Celsius cooler than the temperature that a team -- including Massey and Levesque -- had calculated as Betelgeuse's surface temperature in 2004, years before its dramatic dimming began.

These findings cast doubt that Betelgeuse is dimming because one of the star's massive convection cells had brought hot gas from the interior to the surface, where it had cooled. Many stars have these convection cells, including our own sun. They resemble the surface of a pot of boiling water, said Levesque. But whereas the convection cells on our sun are numerous and relatively small -- roughly the size of Texas or Mexico -- red supergiants like Betelgeuse, which are larger, cooler and have weaker gravity, sport just three or four massive convection cells that stretch over much of their surfaces.

If one of these massive cells had risen to Betelgeuse's surface, Levesque and Massey would have registered a substantially greater decrease in temperature than what they see between 2004 and 2020.

"A comparison with our 2004 spectrum showed immediately that the temperature hadn't changed significantly," said Massey. "We knew the answer had to be dust."

Astronomers have observed clouds of dust around other red supergiants, and additional observations may reveal similar clutter around Betelgeuse.

Over the past few weeks, Betelgeuse has actually started to brighten again, albeit slightly. Even if the recent dimming wasn't an indication that the star would soon explode, to Levesque and Massey, that's no reason to stop looking.

"Red supergiants are very dynamic stars," said Levesque. "The more we can learn about their normal behavior -- temperature fluctuations, dust, convection cells -- the better we can understand them and recognize when something truly unique, like a supernova, might happen."
-end-
The research was funded by grants to Lowell Observatory, the Research Corporation for Scientific Advancement and the National Science Foundation.

For more information, contact Levesque at emsque@uw.edu and Massey at massey@lowell.edu.

FROM:

James Urton
University of Washington
206-543-2580
jurton@uw.edu

Kevin Schindler
Lowell Observatory
928-233-3210
kevin@lowell.edu

University of Washington

Related Betelgeuse Articles from Brightsurf:

Tree rings may hold clues to impacts of distant supernovas on Earth
Massive explosions of energy happening thousands of light-years from Earth may have left traces in our planet's biology and geology, according to new research by University of Colorado Boulder geoscientist Robert Brakenridge.

Stellar explosion in Earth's proximity
When the brightness of the star Betelgeuse dropped dramatically a few months ago, some observers suspected an impending supernova - a stellar explosion that could also cause damage on Earth.

Discovery lays blame on supernova for extinction event nearly 360 million years ago
Between a decline in biodiversity and a series of extinction events, the Late Devonian period was not the most hospitable time on Earth.

Exploding stars may have caused mass extinction on Earth, study shows
Imagine reading by the light of an exploded star, brighter than a full moon.

Hubble helps uncover the mystery of the dimming of Betelgeuse
New observations by the NASA/ESA Hubble Space Telescope suggest that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse's surface.

Hubble finds that Betelgeuse's mysterious dimming is due to a traumatic outburst
Observations by NASA's Hubble Space Telescope are showing that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse's surface.

Dimming Betelgeuse likely isn't cold, just dusty, new study shows
In a paper published on the preprint site arXiv, scientists at the University of Washington and Lowell Observatory report that the average surface temperature of Betelgeuse, calculated using observations taken Feb.

A massive star's dying breaths
Betelgeuse has been the center of significant media attention lately.

ESO telescope sees surface of dim Betelgeuse
Using ESO's Very Large Telescope (VLT), astronomers have captured the unprecedented dimming of Betelgeuse, a red supergiant star in the constellation of Orion.

Researchers wonder if ancient supernovae prompted human ancestors to walk upright
Supernovae bombarded Earth with cosmic energy starting as many as 8 million years ago, with a peak some 2.6 million years ago, initiating an avalanche of electrons in the lower atmosphere and setting off a chain of events that feasibly ended with bipedal hominins.

Read More: Betelgeuse News and Betelgeuse Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.