Argonne's pioneering user facility to add magic number factory

March 06, 2020

One of the big questions in physics and chemistry is, how were the heavy elements from iron to uranium created?  The Argonne Tandem Linac Accelerator System (ATLAS) at the U.S. Department of Energy's (DOE) Argonne National Laboratory is being upgraded with new capabilities to help find the answer to that question and many others.

Of five DOE Office of Science user facilities at Argonne, ATLAS is the longest lived. "Inaugurated in 1978, ATLAS is ever changing and developing new technological advances and responding to emerging research opportunities," says ATLAS director Guy Savard. It is now being outfitted with an "N = 126 factory," scheduled to go online later this year. This new capability will soon be producing beams of heavy atomic nuclei consisting of 126 neutrons. This is made possible, in part, by the addition of a cooler-buncher that cools the beam and converts it from continuous to bunched.

For many decades, ATLAS has been a leading U.S. facility for nuclear structure research and is the world-leading facility in the provision of stable beams for nuclear structure and astrophysics research. ATLAS can accelerate beams ranging across the elements, from hydrogen to uranium, to high energies, then it smashes them into targets for studies of various nuclear structures.

Since its inception, ATLAS has brought together the world's leading scientists and engineers to solve some of the most complex scientific problems in nuclear physics and astrophysics. In particular, it has been instrumental in determining properties of atomic nuclei, the core of matter and the fuel of stars.

"Inaugurated in 1978, ATLAS is ever changing and developing new technological advances and responding to emerging research opportunities." -- ATLAS director Guy Savard

The forthcoming N = 126 factory will be generating beams of atomic nuclei with a "magic number" of neutrons, 126. As Savard explains, "Physics has seven magic numbers: 2, 8, 20, 28, 50, 82 and 126. Atomic nuclei with these numbers of neutrons or protons are exceptionally stable. This stability makes them ideal for research purposes in general."

Scientists at ATLAS will be generating N = 126 nuclei to test a reigning theory of astrophysics -- that the rapid capture of neutrons during the explosion and collapse of massive stars and the collision of neutron stars is responsible for the formation of about half the heavy elements from iron through uranium.

The N = 126 factory will be accelerating a beam composed of a xenon isotope with 82 neutrons into a target composed of a platinum isotope with 120 neutrons. The resulting collisions will transfer neutrons from the xenon beam into a platinum target, yielding isotopes with 126 neutrons and close to that amount. The very heavy neutron-rich isotopes are directed to experimental stations for study.

"The planned studies at ATLAS will provide the first data on neutron-rich isotopes with around 126 neutrons and should play a critical role in understanding the formation of heavy elements, the last stage in the evolution of stars," said Savard. "These and other studies will keep ATLAS at the frontier of science."
The architects of the "N = 126 factory" include Savard, as well as Maxime Brodeur (University of Notre Dame), Adrian Valverde (joint appointment with University of Manitoba), Jason Clark (joint appointment with University of Manitoba), Daniel Lascar (Northwestern University) and Russell Knaack (Argonne's Physics division).

The authors recently published two papers on the subject in Nuclear Instruments and Methods in Physics Research B, "The N = 126 Factory: A New Facility to Produce Very Heavy Neutron-Rich Isotopes" and "A Cooler-Buncher for the N = 126 Factory at Argonne National Laboratory." They received funding from the U.S. Department of Energy's Office of Nuclear Physics and the National Science Foundation.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

DOE/Argonne National Laboratory

Related Astrophysics Articles from Brightsurf:

Astrophysics: A direct view of star/disk interactions
'Nature' publication: The GRAVITY instrument developed for the Very Large Telescope in Chile probes deep into the TW Hydrae system to shape our view of accretion processes in young stars similar to the young Sun

Explosive nuclear astrophysics
An international team has made a key discovery related to 'presolar grains' found in some meteorites.

Using techniques from astrophysics, researchers can forecast drought up to ten weeks ahead
Researchers at the University of Sussex have developed a system which can accurately predict a period of drought in East Africa up to ten weeks ahead.

Astrophysics and AI may offer key to early dementia diagnosis
Crucial early diagnosis of dementia in general practice could improve thanks to a computer model designed in a collaboration between Brighton and Sussex Medical School (BSMS) and astrophysicists at the University of Sussex.

Hubble studies gamma-ray burst with highest energy ever seen
NASA's Hubble Space Telescope has given astronomers a peek at the location of the most energetic outburst ever seen in the universe -- a blast of gamma-rays a trillion times more powerful than visible light.

NASA's TESS presents panorama of southern sky
The glow of the Milky Way -- our galaxy seen edgewise -- arcs across a sea of stars in a new mosaic of the southern sky produced from a year of observations by NASA's Transiting Exoplanet Survey Satellite (TESS).

Giant exoplanet around tiny star challenges understanding of how planets form
An international team of researchers with participation from the University of Göttingen has discovered the first large gas giant orbiting a small star.

'Ringing' black hole validates Einstein's general relativity 10 years ahead of schedule
For the first time, astrophysicists have heard a black hole ringing like a bell.

A family of comets reopens the debate about the origin of Earth's water
Where did the Earth's water come from? Although comets, with their icy nuclei, seem like ideal candidates, analyses have so far shown that their water differs from that in our oceans.

Astronomers discover 2,000-year-old remnant of a nova
For the first time, a European research team involving the University of Göttingen has discovered the remains of a nova in a galactic globular cluster.

Read More: Astrophysics News and Astrophysics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to