Nav: Home

Exploring the deep tissues using photoacoustic imaging

March 06, 2020

Photoacoustic imaging has gained global attention for capturing images without causing pains or using ionizing radiation. Recently, many researchers have heavily studied on observing deep tissues to apply the photoacoustic imaging to clinical diagnosis and practices.

Prof. Chulhong Kim of Creative IT Engineering from POSTECH and his student, Byullee Park conducted joint research with Prof. Hyungwoo Kim and Kyung Min Lee of Cheonnam National University and proposed a new contrast agent for the photoacoustic imaging of deep tissues. They used a nickel-based nanoparticle as a contrast agent that absorbs light at 1,064 nm wavelength. They obtained images of the tissues penetrated in maximum 3.4 cm depth in live animals which is the deepest image observed using this wavelength compared to the previous studies.

The principle of photoacoustic imaging is that it allows lights to be absorbed by tissues which then causes a thermoelastic expansion of the tissues of the organs instantly. This generates sound wave (photoacoustic) signals that are detected as ultrasound wave sensors, producing images. The conventional optical microscopic imaging technologies only allow observing tissues in 1 mm depth. On the other hand, the photoacoustic imaging system produces images of the deep tissues in animals and humans based on optical contrast.

However, the photoacoustic imaging is challenging despite of intense research activities to observe deep tissues in various organs more closely. It is difficult to deliver enough light at 650~900nm short-wavelength with an affordable cost to deep tissues in the body. For this reason, the commercial and clinical translation of photoacoustic imaging are challenging.

To improve this limitation of the photoacoustic imaging, the research team introduced a nanoparticle nickel-based contrast agent, that absorbs light specifically and strongly at 1,064 nm wavelength, to observe deep tissues. They verified biocompatibility of nickel-based nanoparticles and obtained photoacoustic images in deep tissues (3.4cm depth) of lymph nodes, gastrointestinal tracts, bladders of live rats by inserting the nanoparticles.

The first author of the paper, Byullee Park said, "This research is different from the previous studies that used short wavelength. We used long wavelength lasers and were able to minimize damages in the tissues. We were also able to obtain images of deep tissues by delivering lights to organs located in deep inside of the animal."

When this newly developed photoacoustic imaging technique is applied to clinical practices, it can help diagnosis of diseases related to deep organs by producing images noninvasively and without a risk of explosion to radiation unlike other imaging methods that need radiations such as computed tomography (CT). Furthermore, lasers of 1,064 nm wavelength are comparatively economical, and can be used with other commercial ultrasound machines, which bring anticipation of its early clinical applications.

"Our research is the first example of imaging the deepest tissues in the body among all the research papers on photoacoustic imaging so far. It is very meaningful that it has taken a step further to clinical feasibility of photoacoustic imaging," said Prof. Chulhong Kim, the corresponding author of the paper.
-end-
This research was financially supported by ICT Consilience Creative Program of the Ministry of Science and ICT, the Korea Health Technology R&D Project funded by the Ministry of Health, and Welfare and the Pioneer Project sponsored by the National Research Foundation. Details and conclusions of this research was introduced as the cover story in the international journal of nanoparticle imaging diagnosis and treatment, Theranostics.

Pohang University of Science & Technology (POSTECH)

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.