Scientists propose nanoparticles that can treat cancer with magnetic fluid hyperthermia

March 06, 2020

A group of Russian scientists have synthesized manganese-zinc ferrite nanoparticles that can potentially be used in cancer treatment. Due to their unique magnetic properties, the particles can serve as deactivators of affected cells while having almost no negative impact on healthy tissues. The results have been published in the Journal of Sol-Gel Science and Technology.

One of the most important global goals in today's medicine is finding ways to combat cancer. Currently, there are several kinds of treatments with differing effectiveness and various side effects. In most cases, the treatment causes harmful impact not only to cancer cells but also the adjacent healthy tissues or the body at large.

Magnetic fluid hyperthermia is a promising method that can help alleviate the side effects of cancer treatment. This method involves introducing a magnetic nanoparticles-containing sol into a tumor followed by its exposure to a variable magnetic field. This causes the heating of the nanoparticles and leads to the deactivation of cancer cells. However, the majority of the materials used for this purpose are toxic to the body. What is more, the particles continue to heat up to relatively high temperatures, which entails serious damage to healthy tissues.

These problems could be solved by the application of special nanoparticles which can change their magnetic properties depending on the temperature. In physics, there is such a notion as the Curie temperature (also known as the Curie point), which is the temperature at which a sharp decrease in magnetization is observed.

"When the Curie temperature is reached, a ferromagnetic changes into a paramagnetic, consequently the particles cease to be as susceptible to the magnetic field and their further heating stops," explains Vasilii Balanov, a Master's student at ITMO University and one of the research's authors. "When the temperature drops back again, the particles resume their heating. Essentially, we observe a self-management of temperature in a narrow range. If we select a composition that experiences such a transition at the temperature we need, then it could prove effective for magnetic fluid hyperthermia."

Choosing the material, the scientists opted for ferrites - compounds of iron oxide (III)Fe2O3 with oxides of other metals. Generally, thanks to their properties, these materials are widely applied in computer technologies, but, as it turned out, they can also be used for medical purposes.

"We took the particles with the general formula Zn(x)Mn(1-x)Fe2O4, in which zinc and manganese are selected in a certain proportion," expounds Vasilii Balanov. "They don't have a toxic effect on the body, and with the right ratio of manganese and zinc we were able to achieve a Curie temperature in the range of 40-60 degrees Celsius. This temperature allows us to deactivate cancer cells, concurrently, the short-term thermal contact is relatively harmless to healthy tissues."

As of now, the scientists have already synthesized the nanoparticles and studied their magnetic properties. The experiments confirmed that the material doesn't heat up above 60 degrees Celsius when exposed to a variable magnetic field. Coming next will be the experiments on living cells and, if these are successful, on animals.
-end-


ITMO University

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.