Nav: Home

Specialized helper cells contribute to immunological memory

March 06, 2020

Helper T cells play an important role in the immune response against pathogens. The role of a particular subset of these immune cells was previously unclear. It's now been shown that T follicular helper cells live much longer than previously thought and contribute to long-term immunity. Researchers at the University of Basel's Department of Biomedicine reported these findings in Science Immunology.

Most vaccines induce specific antibodies that provide life-long defense against infection by pathogens. There are still many infections, however, for which no vaccines are available, including malaria, HIV and tuberculosis. In the ongoing fight against infectious disease, researchers are therefore exploring new vaccination strategies that focus on T cells, which can also provide protection against pathogens.

Immunological memory

T cell targeted vaccination generates long-lived memory cells that remember the pathogen. Following infection, these memory cells are able to multiply quickly and support pathogen clearance. Researchers at the University of Basel focused their studies on a specialized type of T cell: T follicular helper cells (Tfh). These cells interact with other immune cells, providing essential support for antibody production.

Tfh cells are difficult to study in humans as they don't reside in blood, but mainly in lymph nodes and the spleen, which cannot be sampled routinely. Earlier studies also indicated that Tfh cells fail to make memory in mice, disappearing shortly after an infection subsides.

Surprisingly long-lived Tfh cells

The research group, headed by Professor Carolyn King, has now demonstrated that the disappearance of Tfh cells is largely caused by their susceptibility to death during isolation from the tissue. By treating mice with a small molecule to prevent this, Tfh cells were found to be surprisingly long-lived, persisting for at least 400 days after infection. Unexpectedly, central memory T cells - which have long been considered to be a good target for vaccination - were absent at this time point.

Further investigation showed that the Tfh cells possess stem cell characteristics and continue to support antibody production even at very late time points when the immune response has supposedly died down.

Potential for improved vaccination strategies

This better understanding of Tfh cells opens up new prospects for creating long-term acquired immunity: "We hope that these findings regarding the long-term value of Tfh cells will contribute to the development of improved vaccination strategies," says Carolyn King, from the University of Basel's Department of Biomedicine, of the results.
-end-
Further information

Prof. Dr. Carolyn King, University of Basel, Department of Biomedicine, tel. +41 61 265 38 74, email: carolyn.king@unibas.ch

University of Basel

Related Immune Response Articles:

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Researchers decode the immune response to Ebola vaccine
The vaccine rVSV-EBOV is currently used in the fight against Ebola virus.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Having stressed out ancestors improves immune response to stress
Having ancestors who were frequently exposed to stressors can improve one's own immune response to stressors, according to Penn State researchers.
Researchers discovered new immune response regulators
The research groups of Academy Professor Riitta Lahesmaa and Research Director Laura Elo from Turku Centre for Biotechnology have discovered new proteins that regulate T cells in the human immune system.
Blueprint for plant immune response found
Washington State University researchers have discovered the way plants respond to disease-causing organisms, and how they protect themselves, leading the way to potential breakthroughs in breeding resistance to diseases or pests.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.