LHC magnets: The great descent

March 07, 2005

The first superconducting magnet for the Large Hadron Collider (LHC) was lowered into the accelerator tunnel at 2.00 p.m. on Monday, 7th March. This is the first of the 1232 dipole magnets for the future collider, which measures 27 km in circumference and is scheduled to be commissioned in 2007. The date was thus a key one for CERN since the delivery of the 15 metre long dipole magnet weighing 35 tonnes to its final location marks the start of LHC installation.

The LHC will consist predominantly of superconducting dipole magnets, which are the most complex components of the machine. Their superconducting coil allows them to convey extremely high currents without any loss of energy. They are therefore able to produce very high magnetic fields in order to bend the trajectory of the protons that are accelerated at a speed close to the speed of light. The LHC will thus be the world's most powerful accelerator. The collisions between the protons will reach energies of 14 teraelectronvolts (TeV), 70 times higher than those of the former LEP collider for which the 27 km tunnel was originally built. To reach the superconducting state, the magnets have to be cooled to a temperature of -271°C, close to absolute zero. If the LHC had been made of conventional magnets, it would have needed to be 120 km long to achieve the same energies and its electricity consumption would have been phenomenal.

These superconducting magnets will all be lowered 50 metres down below the earth's surface via a specially made shaft of oval cross-section. They will then be conveyed through a transfer tunnel to the LHC tunnel, which lies at a depth varying between 50 and 150 metres. Vehicles travelling at 3 km an hour have been specially designed to deliver the magnets to their final destination. The narrowness of the tunnel complicates these handling operations, making it impossible, for example, for two loads to pass each other. In addition to the dipole magnets, the LHC will be equipped with hundreds of other, smaller magnets. More than 1800 magnet assemblies will have to be installed. Once in position, the magnets will be connected to the cryogenic system to form a large string operating in superfluid helium, which will maintain the accelerator at a temperature close to absolute zero.

The lowering of this first magnet into the tunnel coincides with another milestone for CERN, namely completion of the delivery of half the superconducting dipole magnets. A total of 616 magnets have been delivered to date, and the same number are due to arrive by autumn 2006. The manufacture of these superconducting magnets represents a huge technical and industrial challenge both for CERN and for European industry. 7000 kilometres of niobium-titanium superconducting cable have had to be produced to make them. Around a hundred companies in Europe are manufacturing the magnet components, and three companies, Babcock Noell Nuclear in Germany, Alstom in France, and Ansaldo in Italy, are responsible for their assembly. The greatest challenge was the move from the prototyping and pre-series phase to large-scale series production, which involved much ground-breaking technology. Success has been achieved, with three industrial sites now able to manufacture between nine and ten magnets a week.
-end-


CERN

Related Large Hadron Collider Articles from Brightsurf:

Cosmic tango between the very small and the very large
A new study using the theory of quantum loop cosmology accounts for two major mysteries about the large-scale structure of our universe.

Profits of large pharmaceutical companies compared to other large public companies
Data from annual financial reports were used to compare the profitability of 35 large pharmaceutical companies with 357 companies in the S&P 500 Index from 2000 to 2018.

Near misses at Large Hadron Collider shed light on the onset of gluon-dominated protons
New findings from University of Kansas researchers center on work at the Large Hadron Collider to better understand the behavior of gluons.

Springer Nature publishes study for a CERN next generation circular collider
Back in January, CERN released a conceptual report outlining preliminary designs for a Future Circular Collider (FCC), which if built, would have the potential to be the most powerful particle collider the world over.

Large cells for tiny leaves
Scientists identify protein that controls leaf growth and shape.

NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.

Mini antimatter accelerator could rival the likes of the Large Hadron Collider
Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.

A domestic electron ion collider would unlock scientific mysteries of atomic nuclei
The science questions that could be answered by an electron ion collider (EIC) -- a very large-scale particle accelerator - are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe, says a new report by the National Academies of Sciences, Engineering, and Medicine.

How large can a tsunami be in the Caribbean?
The 2004 Indian Ocean tsunami has researchers reevaluating whether a magnitude 9.0 megathrust earthquake and resulting tsunami might also be a likely risk for the Caribbean region, seismologists reported at the SSA 2018 Annual Meeting.

Meet the 'odderon': Large Hadron Collider experiment shows potential evidence of quasiparticle sought for decades
A team of high-energy experimental particle physicists, including several from the University of Kansas, has uncovered possible evidence of a subatomic quasiparticle dubbed an

Read More: Large Hadron Collider News and Large Hadron Collider Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.