Protein delivers selenium for normal sperm development

March 07, 2005

A paper to be published in the journal Biology of Reproduction offers evidence that a protein circulating in the blood of mammals delivers the dietary micronutrient selenium to germ cells, enabling these cells to develop into normal sperm.

Previously, the function of this protein, selenoprotein P, was unknown, although it was believed to play a role as an antioxidant and to transport selenium throughout the body.

Dietary selenium is essential for normal sperm development and male fertility. Selenoprotein P, or SEPP1, carries about 60 percent of the selenium in blood plasma.

To understand the physiological function of SEPP1 in the testes and epididymis of mammals, a team of scientists at Vanderbilt University in Nashville studied male mice that lack the gene to produce SEPP1. These genetically altered males have levels of selenium in the testis that are less than 10 percent of those in control mice, and they are generally infertile.

The research team, headed by Dr. Gary E. Olson, found that the mutant male mice lacking SEPP1 develop sperm with defective tails, similar to the sperm produced by unaltered male mice fed a low-selenium diet.

Furthermore, the mutant mice do not recover normal sperm production after prolonged feeding on a diet supplemented with high levels of selenium, and they remain infertile. Thus, even selenium supplements could not overcome the need for SEPP1 to facilitate normal sperm development.

These findings, according to Olson and colleagues, strongly indicate that SEPP1 is the source of the selenium needed for development of normal sperm and for male mice to maintain their fertility.
-end-
Biology of Reproduction, published by the Society for the Study of Reproduction, is the top-rated peer-reviewed journal in the field of reproductive biology.

Society for the Study of Reproduction

Related Fertility Articles from Brightsurf:

What are your chances of having a second IVF baby after fertility treatment for the first?
As the restrictions on fertility clinics start to be lifted and IVF treatment resumes, research published in Human Reproduction journal offers reassuring news to women who have had to delay their treatment for a second IVF baby because of the coronavirus.

Fertility preservation use among transgender adolescents
Transgender adolescents often seek hormonal intervention to achieve a body consistent with their gender identity and those interventions affect reproductive function.

A new way to assess male fertility
Current tests for male fertility include measuring the concentration and motility of spermatozoa.

Male fertility after chemotherapy: New questions raised
Professor Delb├Ęs, who specializes in reproductive toxicology, conducted a pilot study in collaboration with oncologists and fertility specialists from the McGill University Health Centre (MUHC) on a cohort of 13 patients, all survivors of pediatric leukemia and lymphoma.

Vaping may harm fertility in young women
E-cigarette usage may impair fertility and pregnancy outcomes, according to a mouse study published in the Journal of the Endocrine Society.

Are fertility apps useful?
Researchers at EPFL and Stanford have carried out an analysis of the largest datasets from fertility awareness apps.

Marijuana and fertility: Five things to know
For patients who smoke marijuana and their physicians, 'Five things to know about ... marijuana and fertility' provides useful information for people who may want to conceive.

How could a changing climate affect human fertility?
Human adaptation to climate change may include changes in fertility, according to a new study by an international group of researchers.

Migrants face a trade-off between status and fertility
Researchers from the universities of Helsinki, Turku and Missouri as well as the Family Federation of Finland present the first results from a new, extraordinarily comprehensive population-wide dataset that details the lives of over 160,000 World War II evacuees in terms of integration.

Phthalates may impair fertility in female mice
A phthalate found in many plastic and personal care products may decrease fertility in female mice, a new study found.

Read More: Fertility News and Fertility Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.