Wash your mouth out with silver

March 07, 2012

Yeasts which cause hard-to-treat mouth infections are killed using silver nanoparticles in the laboratory, scientists have found. These yeast infections, caused by Candida albicans and Candida glabrata target the young, old and immuno-compromised. Professor Mariana Henriques, University of Minho, and her colleagues hope to test silver nanoparticles in mouthwash and dentures as a potential preventative measure against these infections.

Professor Henriques and her team, who published their research in the Society for Applied Microbiology's journal Letters in Applied Microbiology today, looked at the use of different sizes of silver nanoparticles to determine their anti-fungal properties against Candida albicans and Candida glabrata. These two yeasts cause infections including oral thrush and dental stomatitis, a painful infection affecting around seven out of ten denture wearers1. Infections like these are particularly difficult to treat because the microorganisms involved form biofilms2.

The scientists used artificial biofilms in conditions which mimic those of saliva as closely as possible. They then added different sizes and concentrations of silver nanoparticles and found that different sizes of nanoparticles were equally effective at killing the yeasts. Due to the diversity of the sizes of nanoparticles demonstrating anti-fungal properties the researchers hope this will enable the nanoparticles to be used in many different applications.

Some researchers have expressed concerns around the safety of nanoparticle use but the authors stress this research is at an early stage and extensive safety trials will be carried out before any product reaches the market.

Professor Henriques comments: With the emergence of Candida infections which are frequently resistant to the traditional antifungal therapies, there is an increasing need for alternative approaches. So, silver nanoparticles appear to be a new potential strategy to combat these infections. As the nanoparticles are relatively stable in liquid medium they could be developed into a mouthwash solution in the near future.

Moving forward Professor Henriques hopes to integrate silver nanoparticles into dentures which could prevent infections from taking hold.
-end-


Wiley

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.