Nav: Home

Nanozymes -- efficient antidote against pesticides

March 07, 2017

Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents - nanozymes, which could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorous compounds: pesticides and chemical warfare agents. The research results are published in the Journal of Controlled Release.

A group of scientists from the Faculty of Chemistry under the leadership of Prof. Alexander Kabanov has focused their research supported by a "megagrant" on the nanoparticle-based delivery to an organism of enzymes, capable of destroying toxic organophosphorous compounds. Development of first nanosized drugs has started more than 30 years ago and already in the 90-s first nanomedicines for cancer treatment entered the market. First such medicines were based on liposomes - spherical vesicles made of lipid bilayers. The new technology, developed by Kabanov and his colleagues, uses an enzyme, synthesized at the Lomonosov Moscow State University, encapsulated into a biodegradable polymer coat, based on an amino acid (glutamic acid).

Alexander Kabanov, Doctor of Chemistry, Professor at the Eshelman School of Pharmacy of the University of North Carolina (USA) and the Faculty of Chemistry, M. V. Lomonosov Moscow State University, one of the authors of the article explains: "At the end of the 80-s my team (at that time in Moscow) and independently Japanese colleagues led by Prof. Kazunori Kataoka from Tokyo began using polymer micelles for small molecules delivery. Soon the nanomedicine field has "exploded". Currently hundreds of laboratories across the globe work in this area, applying a wide variety of approaches to creation of such nanosized agents. A medicine on the basis of polymeric micelles, developed by a Korean company Samyang Biopharm, was approved for human use in 2006."

Professor Kabanov's team after moving to the USA in 1994 focused on development of polymer micelles, which could include biopolymers due to electrostatic interactions. Initially chemists were interested in usage of micelles for RNA and DNA delivery but later on scientists started actively utilizing this approach for delivery of proteins and, namely, enzymes, to the brain and other organs.

Alexander Kabanov says: "At the time I worked at the University of Nebraska Medical Center, in Omaha (USA) and by 2010 we had a lot of results in this area. That's why when my colleague from the Chemical Enzymology Department of the Lomonosov Moscow State University, Prof. Natalia Klyachko offered me to apply for a megagrant the research theme of the new laboratory was quite obvious. Specifically, to use our delivery approach, which we've called a "nanozyme", for "improvement" of enzymes, developed by colleagues at the Lomonosov Moscow State University for its further medical application."

Scientists together with the group of enzymologists from the Lomonosov Moscow State University under the leadership of Elena Efremenko, Doctor of Biological Sciences, have chosen organophosphorus hydrolase as a one of the delivered enzymes. Organophosphorus hydrolase is capable of degrading toxic pesticides and chemical warfare agents with very high rate. However, it has disadvantages: because of its bacterial origin, an immune response is observed as a result of its delivery to an organism of mammals. Moreover, organophosphorus hydrolase is quickly removed from the body. Chemists have solved this problem with the help of a "self-assembly" approach: as a result of inclusion of organophosphorus hydrolase enzyme in a nanozyme particles the immune response becomes weaker and, on the contrary, both the storage stability of the enzyme and its lifetime after delivery to an organism considerably increase. Rat experiments have proved that such nanozyme efficiently protects organisms against lethal doses of highly toxic pesticides and even chemical warfare agents, such as VX nerve gas.

Alexander Kabanov summarizes: "The simplicity of our approach is very important. You could get an organophosphorus hydrolase nanozyme by simple mixing of aqueous solutions of anenzyme and safe biocompatible polymer. This nanozyme is self-assembled due to electrostatic interaction between a protein (enzyme) and polymer".

According to the scientist's words the simplicity and technological effectiveness of the approach along with the obtained promising results of animal experiments bring hope that this modality could be successful and in clinical use.

Members of the Faculty of Chemistry of the Lomonosov Moscow State University, along with scientists from the 27th Central Research Institute of the Ministry of Defense of the Russian Federation, the Eshelman School of Pharmacy of the University of North Carolina at Chapel Hill (USA) and the University of Nebraska Medical Center (UNC) have taken part in the Project.
-end-


Lomonosov Moscow State University

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
More Immune Response News and Immune Response Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...