Nav: Home

Legacy of brilliant young scientist is a major leap in quantum computing

March 07, 2017

Researchers from the University of Bristol and Université Libre de Bruxelles have theoretically shown how to write programs for random circuitry in quantum computers.

The breakthrough, published in the New Journal of Physics, is based on the work of first author, Dr Nick Russell, who tragically lost his life in a climbing accident last year.

"One of the many applications for random quantum circuits is the realisation of a rudimentary version of a quantum computer, known as a "boson sampler". A boson sampler could be among an early class of quantum technologies that prove their intrinsic superiority over classical machines. Such a demonstration would be a landmark in the history of science," said Dr Anthony Laing from the University of Bristol's School of Physics, who supervised Dr Russell's thesis.

The work of Dr Russell and researchers in Bristol and Brussels, has theoretically solved the problem of programming random circuitry in quantum computers.

"Most of us understand randomness in terms of the roll of a dice. Programming randomness into any machine might therefore seem like a straightforward task - simply turn any available control knobs to a random setting.

"However, because of the way quantum particles travel through their circuitry, they are affected by many control settings in a certain order. The control knobs must be carefully set according to a specific design, and finding the recipe for randomness in quantum circuitry can be especially tricky.

"With his research, Nick and the teams at Bristol and Brussels have effectively unloaded the quantum dice. By discovering how to program this randomness into circuitry, we are a step closer to creating a boson sampler, and ultimately a quantum computer.

"I'm delighted to see Nick's results published. He was a brilliant scientist. This and his other work will continue to have a significant impact on the field of quantum computing for many years to come," said Dr Laing.

University of Bristol

Related Quantum Computing Articles:

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
A sound idea: a step towards quantum computing
Researchers at the University of Tsukuba and the University of Pittsburgh have developed a new method for using lasers to create tiny lattice waves inside silicon crystals that can encode quantum information.
Quantum computing boost from vapour stabilising technique
A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.
Quantum cloud computing with self-check
With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics.
More Quantum Computing News and Quantum Computing Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.