Nav: Home

Insights into how brain cancer evades the immune system

March 07, 2018

Glioblastoma - a universally fatal form of brain cancer - is known for its ability to hijack immune checkpoints and evade detection and destruction by the body's immune defenses. But many of the details underlying this feat remain unknown. A new study by investigators from Brigham and Women's Hospital finds that some types of glioblastoma tumors may be able to shed extracellular vesicles (EVs) - small packages of biomaterial - that can help to suppress the body's ability to mount an immune response against the tumor. In addition, the team detected DNA levels from these EVs in blood samples from patients with glioblastoma, suggesting that they could potentially serve as a biomarker of the disease. The team's results are published online this week in Science Advances.

"This is the first time that anyone has observed that immune checkpoints can operate through extracellular vesicles and not just through the cell surface," said co-corresponding author Sean Lawler, PhD, of the BWH Department of Neurosurgery. "This is a new concept, suggesting that these vesicles can work more distantly from the tumor cells."

Immune checkpoint inhibitors are already in the clinic and in clinical trials for glioblastoma, but challenges remain. The current study identifies a new mechanism through which tumor cells may be able to suppress the activation of T cells, which have the ability to attack cancer cells. When tumors shed EVs, the vesicles can contain biological materials - including DNA and RNA - that can help tumor cells thrive. In the current study, researchers found that EVs derived from glioblastoma stem-like cells contained PDL-1 - a key component that tumor cells can use to deactivate T cells, protecting themselves from detection.

The research team then analyzed blood samples collected from healthy people and from patients with glioblastoma. They found that 14 of 21 patients tested showed enrichment of PDL-1 DNA in isolated EVs. They also correlated DNA abundance with glioblastoma tumor volume, finding a significant correlation between PDL-1 DNA abundance and tumor size, for tumors up to 60 cubic centimeters.

The authors acknowledge that due to the small sample size, follow up studies are needed to determine if their results are reproducible and if PDL-1 DNA on EVs can provide a viable biomarker for glioblastoma. They are continuing to follow up on these findings in the lab.
-end-
Funding for this work was provided by the National Institutes of Health (P01 CA69246, NCI 1R01 CA176203-01A1, UH3 TR000931) Deutsche Forschungsgemeinschaft (RI 2616/1-1 and RI 2616/2-1), 1RO1NS097649-01, the Doris Duke Charitable Foundation Clinical Scientist Development Award, the Sontag Foundation Distinguished Scientist Award, the Kimmel Scholar Award, and BWF 1006774.01. U19 CA179563 was supported by the NIH Common Fund through the Office of Strategic Coordination/Office of the NIH Director and NIH/NCI P01 CA069246 and by an American-Italian Cancer Foundation Postdoctoral Research Fellowship. All funding information, acknowledgements and competing interest disclosures are available in the published paper.

Paper cited: Ricklefs, FL et al. "Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles" Science Advances DOI: 10.1126/sciadv.aar2766

Brigham and Women's Hospital

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Blueprint: How DNA Makes Us Who We Are (The MIT Press)
by Robert Plomin (Author)

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Native American DNA: Tribal Belonging and the False Promise of Genetic Science
by Kim TallBear (Author)

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
by David Reich (Author)

Dinosaur DNA: A Nonfiction Companion to the Films (Jurassic World)
by Marilyn Easton (Author)

Fundamentals of Forensic DNA Typing
by John M. Butler (Author)

Cosmic Serpent: DNA and the Origins of Knowledge
by Jeremy Narby (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#503 Postpartum Blues (Rebroadcast)
When a woman gives birth, it seems like everyone wants to know how the baby is doing. What does it weigh? Is it breathing right? Did it cry? But it turns out that, in the United States, we're not doing to great at asking how the mom, who just pushed something the size of a pot roast out of something the size of a Cheerio, is doing. This week we talk to anthropologist Kate Clancy about her postpartum experience and how it is becoming distressingly common, and we speak with Julie Wiebe about prolapse, what it is and how it's...