Nav: Home

Northeastern researchers identify 36 new genes implicated in cardiac disease

March 07, 2018

One in four deaths in the United States each year are due to heart disease, according to the Centers for Disease Control and Prevention. It's the leading killer of both men and women, but the disease's genetic complexity makes it difficult to treat.

In a recently-published paper in npj Systems Biology and Applications, Northeastern physics professor Alain Karma and his colleagues describe their discovery of 36 previously unknown genes implicated in heart failure. The team confirmed that one of those genes plays a causal role in cardiac hypertrophy--abnormal thickening of the heart muscle--which can lead to heart failure.

"This is an exciting direction for personalized medicine, and also for identifying genes and therapeutic targets for complex diseases that involve many genes," Karma said.

The ultimate goal is to create personalized therapeutic drugs to reverse heart disease. Researchers are probably still a decade away from achieving that sort of tailored therapy, Karma said. But companies interested in developing such drugs can use the method he and his colleagues developed and the genes they identified to get a step closer.

The framework described in the paper can also be used to predict whether individuals suffering from a particular disease will respond to a given drug treatment, said lead author Marc Santolini, a postdoctoral research associate at Northeastern's Center for Complex Network Research.

"The method can predict beforehand whether a patient should be prescribed a different drug using just a simple blood test. This would save time and accelerate the therapy," Santolini said. "In general, this research highlights the importance of personalized approaches to uncover novel disease genes and better understand disease processes."

The traditional approach to finding genes related to heart disease works like this: Researchers take donated hearts from people who died unexpectedly but were previously healthy. They analyze the gene expression--that is, the amount of messenger RNA and proteins--produced by the genes of healthy hearts and compare it with the gene expression of sick hearts explanted from end-stage heart failure patients undergoing heart transplant.

"You see a different gene expression profile," Karma said. For example, if a gene found in the sick hearts expresses twice the amount of RNA as it did in the healthy hearts, it might be relevant to the disease. But so far, Karma said this method hasn't been very successful in finding important genes.

His team took an entirely different approach--using the Hybrid Mouse Diversity Panel, a collection of 100 genetically different strains of mice that can be used to analyze the genetic and environmental factors underlying complex traits. Within each strain, the mice are inbred, making them all identical twins on a genetic level.

Researchers took two mice from the same strain and gave one of them a stressor drug that induces heart failure. They then compared the stressed mouse's gene expression with its non-stressed twin. Since the mice have the same genome, they were able to pinpoint individual genes that changed expression as a direct result of the heart stressor. The researchers identified 36 such genes.

Many of these genes were previously unknown to be implicated in heart failure. Karma said one of them is known as a transcription factor, meaning it controls the expression of many other genes. The researchers confirmed the gene's role by using molecular biology techniques to silence it and observe the resulting changes of expression. They found the transcription factor gene was directly connected to a whole network of proteins known to play a role in cardiac hypertrophy.

One of the genes Karma found, called RFFL, was previously known to researchers to be implicated in other cardiac processes. However, it was not known to be related to hypertrophy, said Gideon Koren, a physician and director of the Cardiovascular Research Center at Rhode Island Hospital & the Cardiovascular Institute. Koren has been studying RFFL in his lab for the past two years.

"All of the sudden, this study reveals the gene is important for the hypertrophic trait," Koren said. "We now think that RFFL is an important node that can cross-talk with cardiac hypertrophy failure and cardiac excitation." Cardiac excitation is the process that enables the chambers of the heart to contract and relax. "That was something that we wouldn't have explored, given what we knew about RFFL," Koren added.

As a next step, Karma said the new method could be tested on human stem cells, which have the same genetic code as the person they came from and can be induced to have similar gene expression patterns as heart cells.

"When you are comparing two populations of cells from the same person--one that has been controlled and one that has been under the effect of a drug or stressor--you can compare the change of gene expression in a personalized way," Karma said.
-end-


Northeastern University

Related Heart Disease Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
Novel heart valve replacement offers hope for thousands with rheumatic heart disease
A novel heart valve replacement method is revealed today that offers hope for the thousands of patients with rheumatic heart disease who need the procedure each year.
Younger heart attack survivors may face premature heart disease death
For patients age 50 and younger, the risk of premature death after a heart attack has dropped significantly, but their risk is still almost twice as high when compared to the general population, largely due to heart disease and other smoking-related diseases The risk of heart attack can be greatly reduced by quitting smoking, exercising and following a healthy diet.
Citrus fruits could help prevent obesity-related heart disease, liver disease, diabetes
Oranges and other citrus fruits are good for you -- they contain plenty of vitamins and substances, such as antioxidants, that can help keep you healthy.
Gallstone disease may increase heart disease risk
A history of gallstone disease was linked to a 23 percent increased risk of developing coronary heart disease.
Americans are getting heart-healthier: Coronary heart disease decreasing in the US
Coronary heart disease is one of the leading causes of death in the United States.

Related Heart Disease Reading:

Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set
by Douglas P. Zipes MD (Author), Peter Libby MD PhD (Author), Robert O. Bonow MD MS (Author), Douglas L. Mann MD (Author), Gordon F. Tomaselli MD (Author)

Prevent and Reverse Heart Disease: The Revolutionary, Scientifically Proven, Nutrition-Based Cure
by Caldwell B. Esselstyn Jr. (Author)

Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty
by Leonard S. Lilly MD (Author)

The Prevent and Reverse Heart Disease Cookbook: Over 125 Delicious, Life-Changing, Plant-Based Recipes
by Ann Crile Esselstyn (Author), Jane Esselstyn (Author)

The End of Heart Disease: The Eat to Live Plan to Prevent and Reverse Heart Disease
by Joel Fuhrman M.D. (Author)

Illustrated Field Guide to Congenital Heart Disease and Repair - Pocket Sized
by Allen D. Everett (Author), D. Scott, M.D. Lim (Author), Paul Burns (Illustrator), Jasper Burns (Illustrator), Marcia L. Buck (Illustrator), Jane E., M.D. Crosson (Illustrator)

Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Single Volume
by Douglas P. Zipes MD (Author), Peter Libby MD PhD (Author), Robert O. Bonow MD MS (Author), Douglas L. Mann MD (Author), Gordon F. Tomaselli MD (Author)

The Simple Heart Cure: The 90-Day Program to Stop and Reverse Heart Disease
by Chauncey Crandall (Author)

Critical Heart Disease in Infants and Children
by Ross M. Ungerleider MD (Author), Kristen Nelson (Author), David S Cooper (Author), Jon Meliones (Author), Jeffrey Jacobs (Author)

Moss & Adams’ Heart Disease in Infants, Children, and Adolescents, Including the Fetus and Young Adult (2 Volume Set)
by Hugh D. Allen MD FACC FAAP FAHA (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.